BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

421 related articles for article (PubMed ID: 24425250)

  • 1. Differential Receptive Field Properties of Parvalbumin and Somatostatin Inhibitory Neurons in Mouse Auditory Cortex.
    Li LY; Xiong XR; Ibrahim LA; Yuan W; Tao HW; Zhang LI
    Cereb Cortex; 2015 Jul; 25(7):1782-91. PubMed ID: 24425250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diversity of Receptive Fields and Sideband Inhibition with Complex Thalamocortical and Intracortical Origin in L2/3 of Mouse Primary Auditory Cortex.
    Liu J; Kanold PO
    J Neurosci; 2021 Apr; 41(14):3142-3162. PubMed ID: 33593857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual representations by cortical somatostatin inhibitory neurons--selective but with weak and delayed responses.
    Ma WP; Liu BH; Li YT; Huang ZJ; Zhang LI; Tao HW
    J Neurosci; 2010 Oct; 30(43):14371-9. PubMed ID: 20980594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parvalbumin-expressing inhibitory interneurons in auditory cortex are well-tuned for frequency.
    Moore AK; Wehr M
    J Neurosci; 2013 Aug; 33(34):13713-23. PubMed ID: 23966693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A feedforward inhibitory circuit mediates lateral refinement of sensory representation in upper layer 2/3 of mouse primary auditory cortex.
    Li LY; Ji XY; Liang F; Li YT; Xiao Z; Tao HW; Zhang LI
    J Neurosci; 2014 Oct; 34(41):13670-83. PubMed ID: 25297094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organization of Cortical and Thalamic Input to Inhibitory Neurons in Mouse Motor Cortex.
    Okoro SU; Goz RU; Njeri BW; Harish M; Ruff CF; Ross SE; Gerfen C; Hooks BM
    J Neurosci; 2022 Oct; 42(43):8095-8112. PubMed ID: 36104281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cortical Interneurons Differentially Shape Frequency Tuning following Adaptation.
    Natan RG; Rao W; Geffen MN
    Cell Rep; 2017 Oct; 21(4):878-890. PubMed ID: 29069595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic Zinc Enhances Inhibition Mediated by Somatostatin, but not Parvalbumin, Cells in Mouse Auditory Cortex.
    Kouvaros S; Kumar M; Tzounopoulos T
    Cereb Cortex; 2020 Jun; 30(7):3895-3909. PubMed ID: 32090251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network-Level Control of Frequency Tuning in Auditory Cortex.
    Kato HK; Asinof SK; Isaacson JS
    Neuron; 2017 Jul; 95(2):412-423.e4. PubMed ID: 28689982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excitatory Inputs Determine Phase-Locking Strength and Spike-Timing of CA1 Stratum Oriens/Alveus Parvalbumin and Somatostatin Interneurons during Intrinsically Generated Hippocampal Theta Rhythm.
    Huh CY; Amilhon B; Ferguson KA; Manseau F; Torres-Platas SG; Peach JP; Scodras S; Mechawar N; Skinner FK; Williams S
    J Neurosci; 2016 Jun; 36(25):6605-22. PubMed ID: 27335395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional response properties of VIP-expressing inhibitory neurons in mouse visual and auditory cortex.
    Mesik L; Ma WP; Li LY; Ibrahim LA; Huang ZJ; Zhang LI; Tao HW
    Front Neural Circuits; 2015; 9():22. PubMed ID: 26106301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thalamocortical Innervation Pattern in Mouse Auditory and Visual Cortex: Laminar and Cell-Type Specificity.
    Ji XY; Zingg B; Mesik L; Xiao Z; Zhang LI; Tao HW
    Cereb Cortex; 2016 Jun; 26(6):2612-25. PubMed ID: 25979090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Balanced tone-evoked synaptic excitation and inhibition in mouse auditory cortex.
    Tan AY; Wehr M
    Neuroscience; 2009 Nov; 163(4):1302-15. PubMed ID: 19628023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contributions of diverse excitatory and inhibitory neurons to recurrent network activity in cerebral cortex.
    Neske GT; Patrick SL; Connors BW
    J Neurosci; 2015 Jan; 35(3):1089-105. PubMed ID: 25609625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemogenetic Activation of Cortical Parvalbumin-Positive Interneurons Reverses Noise-Induced Impairments in Gap Detection.
    Masri S; Chan N; Marsh T; Zinsmaier A; Schaub D; Zhang L; Wang W; Bao S
    J Neurosci; 2021 Oct; 41(42):8848-8857. PubMed ID: 34452937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective Strengthening of Intracortical Excitatory Input Leads to Receptive Field Refinement during Auditory Cortical Development.
    Sun YJ; Liu BH; Tao HW; Zhang LI
    J Neurosci; 2019 Feb; 39(7):1195-1205. PubMed ID: 30587538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibitory Gating of Basolateral Amygdala Inputs to the Prefrontal Cortex.
    McGarry LM; Carter AG
    J Neurosci; 2016 Sep; 36(36):9391-406. PubMed ID: 27605614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fine Control of Sound Frequency Tuning and Frequency Discrimination Acuity by Synaptic Zinc Signaling in Mouse Auditory Cortex.
    Kumar M; Xiong S; Tzounopoulos T; Anderson CT
    J Neurosci; 2019 Jan; 39(5):854-865. PubMed ID: 30504277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parvalbumin interneuron mediated feedforward inhibition controls signal output in the deep layers of the perirhinal-entorhinal cortex.
    Willems JGP; Wadman WJ; Cappaert NLM
    Hippocampus; 2018 Apr; 28(4):281-296. PubMed ID: 29341361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic Basis for Differential Orientation Selectivity between Complex and Simple Cells in Mouse Visual Cortex.
    Li YT; Liu BH; Chou XL; Zhang LI; Tao HW
    J Neurosci; 2015 Aug; 35(31):11081-93. PubMed ID: 26245969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.