These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
422 related articles for article (PubMed ID: 24425250)
1. Differential Receptive Field Properties of Parvalbumin and Somatostatin Inhibitory Neurons in Mouse Auditory Cortex. Li LY; Xiong XR; Ibrahim LA; Yuan W; Tao HW; Zhang LI Cereb Cortex; 2015 Jul; 25(7):1782-91. PubMed ID: 24425250 [TBL] [Abstract][Full Text] [Related]
2. Diversity of Receptive Fields and Sideband Inhibition with Complex Thalamocortical and Intracortical Origin in L2/3 of Mouse Primary Auditory Cortex. Liu J; Kanold PO J Neurosci; 2021 Apr; 41(14):3142-3162. PubMed ID: 33593857 [TBL] [Abstract][Full Text] [Related]
3. Visual representations by cortical somatostatin inhibitory neurons--selective but with weak and delayed responses. Ma WP; Liu BH; Li YT; Huang ZJ; Zhang LI; Tao HW J Neurosci; 2010 Oct; 30(43):14371-9. PubMed ID: 20980594 [TBL] [Abstract][Full Text] [Related]
4. Parvalbumin-expressing inhibitory interneurons in auditory cortex are well-tuned for frequency. Moore AK; Wehr M J Neurosci; 2013 Aug; 33(34):13713-23. PubMed ID: 23966693 [TBL] [Abstract][Full Text] [Related]
5. A feedforward inhibitory circuit mediates lateral refinement of sensory representation in upper layer 2/3 of mouse primary auditory cortex. Li LY; Ji XY; Liang F; Li YT; Xiao Z; Tao HW; Zhang LI J Neurosci; 2014 Oct; 34(41):13670-83. PubMed ID: 25297094 [TBL] [Abstract][Full Text] [Related]
6. Organization of Cortical and Thalamic Input to Inhibitory Neurons in Mouse Motor Cortex. Okoro SU; Goz RU; Njeri BW; Harish M; Ruff CF; Ross SE; Gerfen C; Hooks BM J Neurosci; 2022 Oct; 42(43):8095-8112. PubMed ID: 36104281 [TBL] [Abstract][Full Text] [Related]
8. Synaptic Zinc Enhances Inhibition Mediated by Somatostatin, but not Parvalbumin, Cells in Mouse Auditory Cortex. Kouvaros S; Kumar M; Tzounopoulos T Cereb Cortex; 2020 Jun; 30(7):3895-3909. PubMed ID: 32090251 [TBL] [Abstract][Full Text] [Related]
9. Network-Level Control of Frequency Tuning in Auditory Cortex. Kato HK; Asinof SK; Isaacson JS Neuron; 2017 Jul; 95(2):412-423.e4. PubMed ID: 28689982 [TBL] [Abstract][Full Text] [Related]
10. Excitatory Inputs Determine Phase-Locking Strength and Spike-Timing of CA1 Stratum Oriens/Alveus Parvalbumin and Somatostatin Interneurons during Intrinsically Generated Hippocampal Theta Rhythm. Huh CY; Amilhon B; Ferguson KA; Manseau F; Torres-Platas SG; Peach JP; Scodras S; Mechawar N; Skinner FK; Williams S J Neurosci; 2016 Jun; 36(25):6605-22. PubMed ID: 27335395 [TBL] [Abstract][Full Text] [Related]
11. Functional response properties of VIP-expressing inhibitory neurons in mouse visual and auditory cortex. Mesik L; Ma WP; Li LY; Ibrahim LA; Huang ZJ; Zhang LI; Tao HW Front Neural Circuits; 2015; 9():22. PubMed ID: 26106301 [TBL] [Abstract][Full Text] [Related]
12. Thalamocortical Innervation Pattern in Mouse Auditory and Visual Cortex: Laminar and Cell-Type Specificity. Ji XY; Zingg B; Mesik L; Xiao Z; Zhang LI; Tao HW Cereb Cortex; 2016 Jun; 26(6):2612-25. PubMed ID: 25979090 [TBL] [Abstract][Full Text] [Related]
13. Balanced tone-evoked synaptic excitation and inhibition in mouse auditory cortex. Tan AY; Wehr M Neuroscience; 2009 Nov; 163(4):1302-15. PubMed ID: 19628023 [TBL] [Abstract][Full Text] [Related]
14. Contributions of diverse excitatory and inhibitory neurons to recurrent network activity in cerebral cortex. Neske GT; Patrick SL; Connors BW J Neurosci; 2015 Jan; 35(3):1089-105. PubMed ID: 25609625 [TBL] [Abstract][Full Text] [Related]
15. Chemogenetic Activation of Cortical Parvalbumin-Positive Interneurons Reverses Noise-Induced Impairments in Gap Detection. Masri S; Chan N; Marsh T; Zinsmaier A; Schaub D; Zhang L; Wang W; Bao S J Neurosci; 2021 Oct; 41(42):8848-8857. PubMed ID: 34452937 [TBL] [Abstract][Full Text] [Related]
16. Selective Strengthening of Intracortical Excitatory Input Leads to Receptive Field Refinement during Auditory Cortical Development. Sun YJ; Liu BH; Tao HW; Zhang LI J Neurosci; 2019 Feb; 39(7):1195-1205. PubMed ID: 30587538 [TBL] [Abstract][Full Text] [Related]
17. Inhibitory Gating of Basolateral Amygdala Inputs to the Prefrontal Cortex. McGarry LM; Carter AG J Neurosci; 2016 Sep; 36(36):9391-406. PubMed ID: 27605614 [TBL] [Abstract][Full Text] [Related]
18. Fine Control of Sound Frequency Tuning and Frequency Discrimination Acuity by Synaptic Zinc Signaling in Mouse Auditory Cortex. Kumar M; Xiong S; Tzounopoulos T; Anderson CT J Neurosci; 2019 Jan; 39(5):854-865. PubMed ID: 30504277 [TBL] [Abstract][Full Text] [Related]
19. Parvalbumin interneuron mediated feedforward inhibition controls signal output in the deep layers of the perirhinal-entorhinal cortex. Willems JGP; Wadman WJ; Cappaert NLM Hippocampus; 2018 Apr; 28(4):281-296. PubMed ID: 29341361 [TBL] [Abstract][Full Text] [Related]
20. Synaptic Basis for Differential Orientation Selectivity between Complex and Simple Cells in Mouse Visual Cortex. Li YT; Liu BH; Chou XL; Zhang LI; Tao HW J Neurosci; 2015 Aug; 35(31):11081-93. PubMed ID: 26245969 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]