BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 24425301)

  • 1. Removal of sulfide and production of methane from carbon dioxide in microbial fuel cells-microbial electrolysis cell (MFCs-MEC) coupled system.
    Jiang Y; Su M; Li D
    Appl Biochem Biotechnol; 2014 Mar; 172(5):2720-31. PubMed ID: 24425301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding methane bioelectrosynthesis from carbon dioxide in a two-chamber microbial electrolysis cells (MECs) containing a carbon biocathode.
    Zhen G; Kobayashi T; Lu X; Xu K
    Bioresour Technol; 2015 Jun; 186():141-148. PubMed ID: 25812818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct biological conversion of electrical current into methane by electromethanogenesis.
    Cheng S; Xing D; Call DF; Logan BE
    Environ Sci Technol; 2009 May; 43(10):3953-8. PubMed ID: 19544913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell.
    Villano M; Scardala S; Aulenta F; Majone M
    Bioresour Technol; 2013 Feb; 130():366-71. PubMed ID: 23313682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electro-conversion of carbon dioxide (CO
    Zhang Z; Song Y; Zheng S; Zhen G; Lu X; Kobayashi T; Xu K; Bakonyi P
    Bioresour Technol; 2019 May; 279():339-349. PubMed ID: 30737066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective microbial electrosynthesis of methane by a pure culture of a marine lithoautotrophic archaeon.
    Beese-Vasbender PF; Grote JP; Garrelfs J; Stratmann M; Mayrhofer KJ
    Bioelectrochemistry; 2015 Apr; 102():50-5. PubMed ID: 25486337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Influence of substrate COD on methane production in single-chambered microbial electrolysis cell].
    Teng WK; Liu GL; Luo HP; Zhang RD; Fu SY
    Huan Jing Ke Xue; 2015 Mar; 36(3):1021-6. PubMed ID: 25929072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the set anode potential on the performance and internal energy losses of a methane-producing microbial electrolysis cell.
    Villano M; Ralo C; Zeppilli M; Aulenta F; Majone M
    Bioelectrochemistry; 2016 Feb; 107():1-6. PubMed ID: 26342333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfate and organic carbon removal by microbial fuel cell with sulfate-reducing bacteria and sulfide-oxidising bacteria anodic biofilm.
    Lee DJ; Liu X; Weng HL
    Bioresour Technol; 2014 Mar; 156():14-9. PubMed ID: 24480414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced methane production in an anaerobic digestion and microbial electrolysis cell coupled system with co-cultivation of Geobacter and Methanosarcina.
    Yin Q; Zhu X; Zhan G; Bo T; Yang Y; Tao Y; He X; Li D; Yan Z
    J Environ Sci (China); 2016 Apr; 42():210-214. PubMed ID: 27090713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple syntrophic interactions drive biohythane production from waste sludge in microbial electrolysis cells.
    Liu Q; Ren ZJ; Huang C; Liu B; Ren N; Xing D
    Biotechnol Biofuels; 2016; 9():162. PubMed ID: 27489567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical reduction of carbon dioxide in an MFC-MEC system with a layer-by-layer self-assembly carbon nanotube/cobalt phthalocyanine modified electrode.
    Zhao H; Zhang Y; Zhao B; Chang Y; Li Z
    Environ Sci Technol; 2012 May; 46(9):5198-204. PubMed ID: 22475021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating microbial electrolysis cell based on electrochemical carbon dioxide reduction into anaerobic osmosis membrane reactor for biogas upgrading.
    Gao T; Zhang H; Xu X; Teng J
    Water Res; 2021 Feb; 190():116679. PubMed ID: 33279741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autotrophic biocathode for high efficient sulfate reduction in microbial electrolysis cells.
    Luo H; Fu S; Liu G; Zhang R; Bai Y; Luo X
    Bioresour Technol; 2014 Sep; 167():462-8. PubMed ID: 25006022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell.
    Wang A; Sun D; Cao G; Wang H; Ren N; Wu WM; Logan BE
    Bioresour Technol; 2011 Mar; 102(5):4137-43. PubMed ID: 21216594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors affecting the performance of microbial fuel cells for sulfide and vanadium (V) treatment.
    Zhang BG; Zhou SG; Zhao HZ; Shi CH; Kong LC; Sun JJ; Yang Y; Ni JR
    Bioprocess Biosyst Eng; 2010 Feb; 33(2):187-94. PubMed ID: 19330358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioelectrical Methane Production with an Ammonium Oxidative Reaction under the No Organic Substance Condition.
    Dinh HTT; Kambara H; Harada Y; Matsushita S; Aoi Y; Kindaichi T; Ozaki N; Ohashi A
    Microbes Environ; 2021; 36(2):. PubMed ID: 34135211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Start-Up Strategies and Electrode Materials on Carbon Dioxide Reduction on Biocathodes.
    Saheb-Alam S; Singh A; Hermansson M; Persson F; Schnürer A; Wilén BM; Modin O
    Appl Environ Microbiol; 2018 Feb; 84(4):. PubMed ID: 29222104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of methane production and microbial community shifts during waste activated sludge degradation in microbial electrolysis cells.
    Sun R; Zhou A; Jia J; Liang Q; Liu Q; Xing D; Ren N
    Bioresour Technol; 2015 Jan; 175():68-74. PubMed ID: 25459805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An MEC-MFC-coupled system for biohydrogen production from acetate.
    Sun M; Sheng GP; Zhang L; Xia CR; Mu ZX; Liu XW; Wang HL; Yu HQ; Qi R; Yu T; Yang M
    Environ Sci Technol; 2008 Nov; 42(21):8095-100. PubMed ID: 19031908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.