These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 24425526)

  • 1. Aragonite nanorods in calcium carbonate/polymer hybrids formed through self-organization processes from amorphous calcium carbonate solution.
    Kajiyama S; Nishimura T; Sakamoto T; Kato T
    Small; 2014 Apr; 10(8):1634-41. PubMed ID: 24425526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning the stability of CaCO3 crystals with magnesium ions for the formation of aragonite thin films on organic polymer templates.
    Zhu F; Nishimura T; Sakamoto T; Tomono H; Nada H; Okumura Y; Kikuchi H; Kato T
    Chem Asian J; 2013 Dec; 8(12):3002-9. PubMed ID: 24006084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomineral-Inspired Colloidal Liquid Crystals: From Assembly of Hybrids Comprising Inorganic Nanocrystals and Organic Polymer Components to Their Functionalization.
    Nakayama M; Kato T
    Acc Chem Res; 2022 Jul; 55(13):1796-1808. PubMed ID: 35699654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of Helically Structured Chitin/CaCO3 Hybrids through an Approach Inspired by the Biomineralization Processes of Crustacean Cuticles.
    Matsumura S; Kajiyama S; Nishimura T; Kato T
    Small; 2015 Oct; 11(38):5127-33. PubMed ID: 26192070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A carbonate controlled-addition method for amorphous calcium carbonate spheres stabilized by poly(acrylic acid)s.
    Huang SC; Naka K; Chujo Y
    Langmuir; 2007 Nov; 23(24):12086-95. PubMed ID: 17963412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of stable vaterite with poly(acrylic acid) by the delayed addition method.
    Naka K; Huang SC; Chujo Y
    Langmuir; 2006 Aug; 22(18):7760-7. PubMed ID: 16922561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of single-crystalline aragonite tablets/films via an amorphous precursor.
    Amos FF; Sharbaugh DM; Talham DR; Gower LB; Fricke M; Volkmer D
    Langmuir; 2007 Feb; 23(4):1988-94. PubMed ID: 17279685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the type of phospholipid head and of the conformation of the polyelectrolyte on the growth of calcium carbonate thin films on LB/LbL matrices.
    Ramos AP; Espimpolo DM; Zaniquelli ME
    Colloids Surf B Biointerfaces; 2012 Jun; 95():178-85. PubMed ID: 22429782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and characterization of calcite and aragonite in polyol liquids: control over structure and morphology.
    Skapin SD; Sondi I
    J Colloid Interface Sci; 2010 Jul; 347(2):221-6. PubMed ID: 20413127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of thin calcium carbonate films with aragonite and vaterite forms coexisting with polyacrylic acids and chitosan membranes.
    Wada N; Suda S; Kanamura K; Umegaki T
    J Colloid Interface Sci; 2004 Nov; 279(1):167-74. PubMed ID: 15380426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The nacre protein perlucin nucleates growth of calcium carbonate crystals.
    Blank S; Arnoldi M; Khoshnavaz S; Treccani L; Kuntz M; Mann K; Grathwohl G; Fritz M
    J Microsc; 2003 Dec; 212(Pt 3):280-91. PubMed ID: 14629554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rosette-shaped calcite structures at surfaces: mechanistic implications for CaCO3 crystallization.
    Yang SH; Choi IS
    Chem Asian J; 2010 Jul; 5(7):1586-93. PubMed ID: 20512803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microscopic structure of the polymer-induced liquid precursor for calcium carbonate.
    Xu Y; Tijssen KCH; Bomans PHH; Akiva A; Friedrich H; Kentgens APM; Sommerdijk NAJM
    Nat Commun; 2018 Jul; 9(1):2582. PubMed ID: 29968713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-compatible properties of calcium carbonates and hydroxyapatite deposited on ultrathin poly(vinyl alcohol)-coated polyethylene films.
    Serizawa T; Tateishi T; Akashi M
    J Biomater Sci Polym Ed; 2003; 14(7):653-63. PubMed ID: 12903734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic approach to forming chitin/aragonite composites.
    Munro NH; McGrath KM
    Chem Commun (Camb); 2012 May; 48(39):4716-8. PubMed ID: 22473223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transformation of amorphous calcium carbonate to rod-like single crystal calcite via "copying" collagen template.
    Xue Z; Hu B; Dai S; Du Z
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():506-11. PubMed ID: 26117783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of calcite thin films by cooperation of polyacrylic acid and self-generating electric field due to aligned dipoles of polarized substrates.
    Wada N; Nakamura M; Tanaka Y; Kanamura K; Yamashita K
    J Colloid Interface Sci; 2009 Feb; 330(2):374-9. PubMed ID: 19062036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acid polysaccharide-induced amorphous calcium carbonate (ACC) films: colloidal nanoparticle self-organization process.
    Zhong C; Chu CC
    Langmuir; 2009 Mar; 25(5):3045-9. PubMed ID: 19437772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nano CaCO₃ imprinted starch hybrid polyethylhexylacrylate\polyvinylalcohol nanocomposite thin films.
    Prusty K; Swain SK
    Carbohydr Polym; 2016 Mar; 139():90-8. PubMed ID: 26794951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liquid-Crystalline Biomacromolecular Templates for the Formation of Oriented Thin-Film Hybrids Composed of Ordered Chitin and Alkaline-Earth Carbonate.
    Nishimura T; Toyoda K; Ito T; Oaki Y; Namatame Y; Kato T
    Chem Asian J; 2015 Nov; 10(11):2356-60. PubMed ID: 26174814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.