These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 24425773)

  • 1. Yet more intramolecular cross-links in Gram-positive surface proteins.
    Schwarz-Linek U; Banfield MJ
    Proc Natl Acad Sci U S A; 2014 Jan; 111(4):1229-30. PubMed ID: 24425773
    [No Abstract]   [Full Text] [Related]  

  • 2. Autocatalytically generated Thr-Gln ester bond cross-links stabilize the repetitive Ig-domain shaft of a bacterial cell surface adhesin.
    Kwon H; Squire CJ; Young PG; Baker EN
    Proc Natl Acad Sci U S A; 2014 Jan; 111(4):1367-72. PubMed ID: 24344302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cleavage of bile acid conjugates by cell-free extracts from Clostridium perfringens.
    Nair PP; Gordon M; Gordon S; Reback J; Mendeloff AI
    Life Sci; 1965 Oct; 4(19):1887-92. PubMed ID: 4284941
    [No Abstract]   [Full Text] [Related]  

  • 4. Self-generated covalent cross-links in the cell-surface adhesins of Gram-positive bacteria.
    Baker EN; Squire CJ; Young PG
    Biochem Soc Trans; 2015 Oct; 43(5):787-94. PubMed ID: 26517883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism of pentoses by clostridia. I. Enzymes of ribose dissimilation in extracts of Clostridium perfringens.
    CYNKIN MA; DELWICHE EA
    J Bacteriol; 1958 Mar; 75(3):331-4. PubMed ID: 13513606
    [No Abstract]   [Full Text] [Related]  

  • 6. Regulation of Toxin Production in Clostridium perfringens.
    Ohtani K; Shimizu T
    Toxins (Basel); 2016 Jul; 8(7):. PubMed ID: 27399773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporation of C14 from amino acids and peptides into protein by Clostridium perfringens type D.
    Hauschild AH
    J Bacteriol; 1965 Dec; 90(6):1569-74. PubMed ID: 4285333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dietary glycine concentration affects intestinal Clostridium perfringens and lactobacilli populations in broiler chickens.
    Dahiya JP; Hoehler D; Wilkie DC; Van Kessel AG; Drew MD
    Poult Sci; 2005 Dec; 84(12):1875-85. PubMed ID: 16479944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclic Di-GMP Binding by an Assembly ATPase (PilB2) and Control of Type IV Pilin Polymerization in the Gram-Positive Pathogen Clostridium perfringens.
    Hendrick WA; Orr MW; Murray SR; Lee VT; Melville SB
    J Bacteriol; 2017 May; 199(10):. PubMed ID: 28242722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CodY is a global regulator of virulence-associated properties for Clostridium perfringens type D strain CN3718.
    Li J; Ma M; Sarker MR; McClane BA
    mBio; 2013 Oct; 4(5):e00770-13. PubMed ID: 24105766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of fibronectin-binding proteins in Clostridium perfringens.
    Katayama S; Nozu N; Yokoyama M; Hitsumoto Y
    Acta Med Okayama; 2006 Dec; 60(6):351-5. PubMed ID: 17189979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association of genes encoding beta2 toxin and a collagen binding protein in Clostridium perfringens isolates of porcine origin.
    Jost BH; Billington SJ; Trinh HT; Songer JG
    Vet Microbiol; 2006 Jun; 115(1-3):173-82. PubMed ID: 16513295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene regulation by the VirS/VirR system in Clostridium perfringens.
    Ohtani K
    Anaerobe; 2016 Oct; 41():5-9. PubMed ID: 27296833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New amino acid germinants for spores of the enterotoxigenic Clostridium perfringens type A isolates.
    Udompijitkul P; Alnoman M; Banawas S; Paredes-Sabja D; Sarker MR
    Food Microbiol; 2014 Dec; 44():24-33. PubMed ID: 25084641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 1H, 15N and 13C backbone and side-chain resonance assignments of a family 32 carbohydrate-binding module from the Clostridium perfringens NagH.
    Grondin JM; Chitayat S; Ficko-Blean E; Boraston AB; Smith SP
    Biomol NMR Assign; 2012 Oct; 6(2):139-42. PubMed ID: 21912839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural biology of Gram-positive bacterial adhesins.
    Vengadesan K; Narayana SV
    Protein Sci; 2011 May; 20(5):759-72. PubMed ID: 21404359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harnessing ester bond chemistry for protein ligation.
    Young PG; Yosaatmadja Y; Harris PW; Leung IK; Baker EN; Squire CJ
    Chem Commun (Camb); 2017 Jan; 53(9):1502-1505. PubMed ID: 28084475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Toxins of Clostridium perfringens].
    Morris WE; Fernández-Miyakawa ME
    Rev Argent Microbiol; 2009; 41(4):251-60. PubMed ID: 20085190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clostridium perfringens Sporulation and Sporulation-Associated Toxin Production.
    Li J; Paredes-Sabja D; Sarker MR; McClane BA
    Microbiol Spectr; 2016 Jun; 4(3):. PubMed ID: 27337447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The action of an enzyme of Clostridium perfringens on orosomucoid.
    POPENOE EA; DREW RM
    J Biol Chem; 1957 Oct; 228(2):673-83. PubMed ID: 13475351
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.