BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 24425881)

  • 1. Structural basis for promutagenicity of 8-halogenated guanine.
    Koag MC; Min K; Lee S
    J Biol Chem; 2014 Feb; 289(9):6289-98. PubMed ID: 24425881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-dependent conformational activation explains highly promutagenic replication across O6-methylguanine by human DNA polymerase β.
    Koag MC; Lee S
    J Am Chem Soc; 2014 Apr; 136(15):5709-21. PubMed ID: 24694247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Promutagenicity of 8-Chloroguanine, A Major Inflammation-Induced Halogenated DNA Lesion.
    Kou Y; Koag MC; Lee S
    Molecules; 2019 Sep; 24(19):. PubMed ID: 31569643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for the inefficient nucleotide incorporation opposite cisplatin-DNA lesion by human DNA polymerase β.
    Koag MC; Lai L; Lee S
    J Biol Chem; 2014 Nov; 289(45):31341-8. PubMed ID: 25237188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Promutagenic bypass of 7,8-dihydro-8-oxoadenine by translesion synthesis DNA polymerase Dpo4.
    Jung H; Lee S
    Biochem J; 2020 Aug; 477(15):2859-2871. PubMed ID: 32686822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition-state destabilization reveals how human DNA polymerase β proceeds across the chemically unstable lesion N7-methylguanine.
    Koag MC; Kou Y; Ouzon-Shubeita H; Lee S
    Nucleic Acids Res; 2014 Jul; 42(13):8755-66. PubMed ID: 24966350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uncovering the polymerase-induced cytotoxicity of an oxidized nucleotide.
    Freudenthal BD; Beard WA; Perera L; Shock DD; Kim T; Schlick T; Wilson SH
    Nature; 2015 Jan; 517(7536):635-9. PubMed ID: 25409153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for proficient incorporation of dTTP opposite O6-methylguanine by human DNA polymerase iota.
    Pence MG; Choi JY; Egli M; Guengerich FP
    J Biol Chem; 2010 Dec; 285(52):40666-72. PubMed ID: 20961860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binary complex crystal structure of DNA polymerase β reveals multiple conformations of the templating 8-oxoguanine lesion.
    Batra VK; Shock DD; Beard WA; McKenna CE; Wilson SH
    Proc Natl Acad Sci U S A; 2012 Jan; 109(1):113-8. PubMed ID: 22178760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and Kinetic Studies of the Effect of Guanine N7 Alkylation and Metal Cofactors on DNA Replication.
    Kou Y; Koag MC; Lee S
    Biochemistry; 2018 Aug; 57(34):5105-5116. PubMed ID: 29957995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into the effect of minor groove interactions and metal cofactors on mutagenic replication by human DNA polymerase β.
    Koag MC; Lee S
    Biochem J; 2018 Feb; 475(3):571-585. PubMed ID: 29301983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutagenic conformation of 8-oxo-7,8-dihydro-2'-dGTP in the confines of a DNA polymerase active site.
    Batra VK; Beard WA; Hou EW; Pedersen LC; Prasad R; Wilson SH
    Nat Struct Mol Biol; 2010 Jul; 17(7):889-90. PubMed ID: 20526335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Insights into the Translesion Synthesis of Benzyl-Guanine from Molecular Dynamics Simulations: Structural Evidence of Mutagenic and Nonmutagenic Replication.
    Wilson KA; Wetmore SD
    Biochemistry; 2017 Apr; 56(13):1841-1853. PubMed ID: 28290677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA polymerase minor groove interactions modulate mutagenic bypass of a templating 8-oxoguanine lesion.
    Freudenthal BD; Beard WA; Wilson SH
    Nucleic Acids Res; 2013 Feb; 41(3):1848-58. PubMed ID: 23267011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How a low-fidelity DNA polymerase chooses non-Watson-Crick from Watson-Crick incorporation.
    Wu WJ; Su MI; Wu JL; Kumar S; Lim LH; Wang CW; Nelissen FH; Chen MC; Doreleijers JF; Wijmenga SS; Tsai MD
    J Am Chem Soc; 2014 Apr; 136(13):4927-37. PubMed ID: 24617852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into the mismatch discrimination mechanism of Y-family DNA polymerase Dpo4.
    Jung H; Lee S
    Biochem J; 2021 May; 478(9):1769-1781. PubMed ID: 33881499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mismatched base-pair simulations for ASFV Pol X/DNA complexes help interpret frequent G*G misincorporation.
    Sampoli Benítez BA; Arora K; Balistreri L; Schlick T
    J Mol Biol; 2008 Dec; 384(5):1086-97. PubMed ID: 18955064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How Y-Family DNA polymerase IV is more accurate than Dpo4 at dCTP insertion opposite an N2-dG adduct of benzo[a]pyrene.
    Sholder G; Creech A; Loechler EL
    DNA Repair (Amst); 2015 Nov; 35():144-53. PubMed ID: 26523515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of DNA polymerase beta with the mutagenic DNA lesion 8-oxodeoxyguanine reveals structural insights into its coding potential.
    Krahn JM; Beard WA; Miller H; Grollman AP; Wilson SH
    Structure; 2003 Jan; 11(1):121-7. PubMed ID: 12517346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutagenesis mechanism of the major oxidative adenine lesion 7,8-dihydro-8-oxoadenine.
    Koag MC; Jung H; Lee S
    Nucleic Acids Res; 2020 May; 48(9):5119-5134. PubMed ID: 32282906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.