These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 24425973)

  • 1. Microwave-vacuum drying of sour cherry: comparison of mathematical models and artificial neural networks.
    Motavali A; Najafi GH; Abbasi S; Minaei S; Ghaderi A
    J Food Sci Technol; 2013 Aug; 50(4):714-22. PubMed ID: 24425973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drying characteristics and quality of shiitake mushroom undergoing microwave-vacuum drying and microwave-vacuum combined with infrared drying.
    Kantrong H; Tansakul A; Mittal GS
    J Food Sci Technol; 2014 Dec; 51(12):3594-608. PubMed ID: 25477627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial neural network modeling for temperature and moisture content prediction in tomato slices undergoing microwave-vacuum drying.
    Poonnoy P; Tansakul A; Chinnan M
    J Food Sci; 2007 Jan; 72(1):E042-7. PubMed ID: 17995884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of moisture ratio for apple drying by convective and microwave methods using artificial neural network modeling.
    Rasooli Sharabiani V; Kaveh M; Abdi R; Szymanek M; Tanaś W
    Sci Rep; 2021 Apr; 11(1):9155. PubMed ID: 33911111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical and intelligent modeling of stevia (
    Bakhshipour A; Zareiforoush H; Bagheri I
    Food Sci Nutr; 2021 Jan; 9(1):532-543. PubMed ID: 33473314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical modeling of thin layer microwave drying of Jaya fish (
    Ghimire A; Basnet S; Poudel R; Ghimire A
    Food Sci Technol Int; 2021 Sep; 27(6):508-516. PubMed ID: 33143468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of frozen sour cherries vacuum drying process.
    Sumić Z; Tepić A; Vidović S; Jokić S; Malbaša R
    Food Chem; 2013 Jan; 136(1):55-63. PubMed ID: 23017392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave-vacuum extraction cum drying of tomato slices: Optimization and functional characterization.
    Alvi T; Khan MKI; Maan AA; Rizwan M; Aamir M; Saeed F; Ateeq H; Raza MQ; Afzaal M; Shah MA
    Food Sci Nutr; 2023 Jul; 11(7):4263-4274. PubMed ID: 37457146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of some physical and drying properties of terebinth fruit (Pistacia atlantica L.) using Artificial Neural Networks.
    Kaveh M; Chayjan RA
    Acta Sci Pol Technol Aliment; 2014; 13(1):65-78. PubMed ID: 24583385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drying kinetics and quality characteristics of microwave-vacuum dried Saskatoon berries.
    Meda V; Gupta M; Opoku A
    J Microw Power Electromagn Energy; 2008; 42(4):4-12. PubMed ID: 19227059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parboiled Paddy Drying with Different Dryers: Thermodynamic and Quality Properties, Mathematical Modeling Using ANNs Assessment.
    Taghinezhad E; Szumny A; Kaveh M; Rasooli Sharabiani V; Kumar A; Shimizu N
    Foods; 2020 Jan; 9(1):. PubMed ID: 31941076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thin-layer modeling of convective and microwave-convective drying of oyster mushroom (Pleurotus ostreatus).
    Bhattacharya M; Srivastav PP; Mishra HN
    J Food Sci Technol; 2015 Apr; 52(4):2013-22. PubMed ID: 25829581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling and experimental analysis of rice drying in new fluidized bed assisted hybrid infrared-microwave dryer.
    Nanvakenari S; Movagharnejad K; Latifi A
    Food Res Int; 2022 Sep; 159():111617. PubMed ID: 35940808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New model for colour kinetics of plum under infrared vacuum condition and microwave drying.
    Chayjan RA; Alaei B
    Acta Sci Pol Technol Aliment; 2016; 15(2):131-144. PubMed ID: 28071003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling of nectarine drying under near infrared - Vacuum conditions.
    Alaei B; Chayjan RA
    Acta Sci Pol Technol Aliment; 2015; 14(1):15-27. PubMed ID: 28068016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent application of artificial neural network in microwave drying of foods: a mini-review.
    Yang R; Chen J
    J Sci Food Agric; 2022 Nov; 102(14):6202-6210. PubMed ID: 35567404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development, validation, and comparison of FE modeling and ANN model for mixed-mode solar drying of potato cylinders.
    Dhalsamant K
    J Food Sci; 2021 Aug; 86(8):3384-3402. PubMed ID: 34287892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of microwave power on kinetics and characteristics of microwave vacuum-dried longan (Dimocarpus longan Lour.) pulp.
    Su D; Zhang M; Wei Z; Tang X; Zhang R; Liu L; Deng Y
    Food Sci Technol Int; 2015 Mar; 21(2):124-32. PubMed ID: 24367023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of hybrid (microwave-convectional) and convectional drying on drying kinetics, total phenolics, antioxidant capacity, vitamin C, color and rehydration capacity of sour cherries.
    Horuz E; Bozkurt H; Karataş H; Maskan M
    Food Chem; 2017 Sep; 230():295-305. PubMed ID: 28407914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of gum-based coatings combined with ultrasonic pretreatment before drying on quality of sour cherries.
    Salehi F; Inanloodoghouz M
    Ultrason Sonochem; 2023 Nov; 100():106633. PubMed ID: 37820414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.