BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 24426126)

  • 1. Expression, Purification and Characterization of the Proline Dehydrogenase Domain of PutA from Pseudomonas putida POS-F84.
    Omidinia E; Mahdizadehdehosta R; Mohammadi HS
    Indian J Microbiol; 2013 Sep; 53(3):297-302. PubMed ID: 24426126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proline dehydrogenase from Pseudomonas fluorescence: gene cloning, purification, characterization and homology modeling.
    Mohammadi HS; Omidinia E
    Prikl Biokhim Mikrobiol; 2012; 48(2):191-8. PubMed ID: 22586912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partitioning of Recombinant Pseudomonas putida POS-F84 Proline Dehydrogenase in Aqueous Two-Phase Systems: Optimization Using Response Surface Methodology.
    Omidinia E; Shahbazmohammadi H; MohseniPour Z; Mahdizadeh R
    Appl Biochem Biotechnol; 2019 Oct; 189(2):498-510. PubMed ID: 31053997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proline catabolism by Pseudomonas putida: cloning, characterization, and expression of the put genes in the presence of root exudates.
    Vílchez S; Molina L; Ramos C; Ramos JL
    J Bacteriol; 2000 Jan; 182(1):91-9. PubMed ID: 10613867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening and characterization of proline dehydrogenase flavoenzyme producing Pseudomonas entomophila.
    Shahbaz-Mohammadi H; Omidinia E
    Iran J Microbiol; 2011 Dec; 3(4):201-9. PubMed ID: 22530089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the proline dehydrogenase domain of the multifunctional PutA flavoprotein.
    Lee YH; Nadaraia S; Gu D; Becker DF; Tanner JJ
    Nat Struct Biol; 2003 Feb; 10(2):109-14. PubMed ID: 12514740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delta1-pyrroline-5-carboxylic acid formed by proline dehydrogenase from the Bacillus subtilis ssp. natto expressed in Escherichia coli as a precursor for 2-acetyl-1-pyrroline.
    Huang TC; Huang YW; Hung HJ; Ho CT; Wu ML
    J Agric Food Chem; 2007 Jun; 55(13):5097-102. PubMed ID: 17536821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing a hydrogen bond pair and the FAD redox properties in the proline dehydrogenase domain of Escherichia coli PutA.
    Baban BA; Vinod MP; Tanner JJ; Becker DF
    Biochim Biophys Acta; 2004 Sep; 1701(1-2):49-59. PubMed ID: 15450175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression, purification, and characterization of alanine racemase from Pseudomonas putida YZ-26.
    Liu JL; Liu XQ; Shi YW
    World J Microbiol Biotechnol; 2012 Jan; 28(1):267-74. PubMed ID: 22806802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for hysteretic substrate channeling in the proline dehydrogenase and Δ1-pyrroline-5-carboxylate dehydrogenase coupled reaction of proline utilization A (PutA).
    Moxley MA; Sanyal N; Krishnan N; Tanner JJ; Becker DF
    J Biol Chem; 2014 Feb; 289(6):3639-51. PubMed ID: 24352662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Divergent structure and regulatory mechanism of proline catabolic systems: characterization of the putAP proline catabolic operon of Pseudomonas aeruginosa PAO1 and its regulation by PruR, an AraC/XylS family protein.
    Nakada Y; Nishijyo T; Itoh Y
    J Bacteriol; 2002 Oct; 184(20):5633-40. PubMed ID: 12270821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structures of the Escherichia coli PutA proline dehydrogenase domain in complex with competitive inhibitors.
    Zhang M; White TA; Schuermann JP; Baban BA; Becker DF; Tanner JJ
    Biochemistry; 2004 Oct; 43(39):12539-48. PubMed ID: 15449943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steady-state kinetic mechanism of the proline:ubiquinone oxidoreductase activity of proline utilization A (PutA) from Escherichia coli.
    Moxley MA; Tanner JJ; Becker DF
    Arch Biochem Biophys; 2011 Dec; 516(2):113-20. PubMed ID: 22040654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of the putA gene encoding proline dehydrogenase from Rhodobacter capsulatus is independent of NtrC regulation but requires an Lrp-like activator protein.
    Keuntje B; Masepohl B; Klipp W
    J Bacteriol; 1995 Nov; 177(22):6432-9. PubMed ID: 7592417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the proline-dependent conformational change in the multifunctional PutA flavoprotein by tryptophan fluorescence spectroscopy.
    Zhu W; Becker DF
    Biochemistry; 2005 Sep; 44(37):12297-306. PubMed ID: 16156643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of expression of divergent Pseudomonas putida put promoters for proline catabolism.
    Vílchez S; Manzanera M; Ramos JL
    Appl Environ Microbiol; 2000 Dec; 66(12):5221-5. PubMed ID: 11097893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the function of a ligand-modulated dynamic tunnel in bifunctional proline utilization A (PutA).
    Korasick DA; Christgen SL; Qureshi IA; Becker DF; Tanner JJ
    Arch Biochem Biophys; 2021 Nov; 712():109025. PubMed ID: 34506758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning and characterization of a bifunctional glycosyl hydrolase from an antagonistic Pseudomonas putida strain P3(4).
    Singh NA; Shanmugam V
    J Basic Microbiol; 2012 Jun; 52(3):340-9. PubMed ID: 21953214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning, Expression and Purification of
    Afshari E; Amini-Bayat Z; Hosseinkhani S; Bakhtiari N
    Avicenna J Med Biotechnol; 2017; 9(4):169-175. PubMed ID: 29090065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning, sequence analysis, and expression of the gene encoding formaldehyde dismutase from Pseudomonas putida F61.
    Yanase H; Noda H; Aoki K; Kita K; Kato N
    Biosci Biotechnol Biochem; 1995 Feb; 59(2):197-202. PubMed ID: 7766017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.