These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 24427191)
1. Coupling-induced synchronization in multicellular circadian oscillators of mammals. Li Y; Liu Z; Luo J; Wu H Cogn Neurodyn; 2013 Feb; 7(1):59-65. PubMed ID: 24427191 [TBL] [Abstract][Full Text] [Related]
2. Synchronization and entrainment of coupled circadian oscillators. Komin N; Murza AC; Hernández-García E; Toral R Interface Focus; 2011 Feb; 1(1):167-76. PubMed ID: 22419982 [TBL] [Abstract][Full Text] [Related]
3. Spontaneous synchronization of coupled circadian oscillators. Gonze D; Bernard S; Waltermann C; Kramer A; Herzel H Biophys J; 2005 Jul; 89(1):120-9. PubMed ID: 15849258 [TBL] [Abstract][Full Text] [Related]
4. Synchronisation mechanisms of circadian rhythms in the suprachiasmatic nucleus. Li Y; Liu Z; Zhang J; Wang R; Chen L IET Syst Biol; 2009 Mar; 3(2):100-12. PubMed ID: 19292564 [TBL] [Abstract][Full Text] [Related]
5. Network rewiring and plasticity promotes synchronization of suprachiasmatic nucleus neurons. Zhou J; Wang H; Ouyang Q Chaos; 2022 Feb; 32(2):023101. PubMed ID: 35232040 [TBL] [Abstract][Full Text] [Related]
6. Noise Induces Oscillation and Synchronization of the Circadian Neurons. Gu C; Xu J; Rohling J; Yang H; Liu Z PLoS One; 2015; 10(12):e0145360. PubMed ID: 26691765 [TBL] [Abstract][Full Text] [Related]
7. Simulation of circadian rhythm generation in the suprachiasmatic nucleus with locally coupled self-sustained oscillators. Kunz H; Achermann P J Theor Biol; 2003 Sep; 224(1):63-78. PubMed ID: 12900204 [TBL] [Abstract][Full Text] [Related]
8. Disassortative Network Structure Improves the Synchronization between Neurons in the Suprachiasmatic Nucleus. Gu C; Gu X; Wang P; Ren H; Weng T; Yang H; Rohling JHT J Biol Rhythms; 2019 Oct; 34(5):515-524. PubMed ID: 31317809 [TBL] [Abstract][Full Text] [Related]
14. The circadian rhythm induced by the heterogeneous network structure of the suprachiasmatic nucleus. Gu C; Yang H Chaos; 2016 May; 26(5):053112. PubMed ID: 27249952 [TBL] [Abstract][Full Text] [Related]
15. Development of the mammalian circadian clock. Honma S Eur J Neurosci; 2020 Jan; 51(1):182-193. PubMed ID: 30589961 [TBL] [Abstract][Full Text] [Related]
16. Mathematical modeling in chronobiology. Bordyugov G; Westermark PO; Korenčič A; Bernard S; Herzel H Handb Exp Pharmacol; 2013; (217):335-57. PubMed ID: 23604486 [TBL] [Abstract][Full Text] [Related]
18. Clock-Talk: Interactions between Central and Peripheral Circadian Oscillators in Mammals. Schibler U; Gotic I; Saini C; Gos P; Curie T; Emmenegger Y; Sinturel F; Gosselin P; Gerber A; Fleury-Olela F; Rando G; Demarque M; Franken P Cold Spring Harb Symp Quant Biol; 2015; 80():223-32. PubMed ID: 26683231 [TBL] [Abstract][Full Text] [Related]
19. Effect of network architecture on synchronization and entrainment properties of the circadian oscillations in the suprachiasmatic nucleus. Hafner M; Koeppl H; Gonze D PLoS Comput Biol; 2012; 8(3):e1002419. PubMed ID: 22423219 [TBL] [Abstract][Full Text] [Related]
20. Contribution of membrane-associated oscillators to biological timing at different timescales. Stengl M; Schneider AC Front Physiol; 2023; 14():1243455. PubMed ID: 38264332 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]