These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 24427532)

  • 1. Where do the platelets go? A simulation study of fully resolved blood flow through aneurysmal vessels.
    Mountrakis L; Lorenz E; Hoekstra AG
    Interface Focus; 2013 Apr; 3(2):20120089. PubMed ID: 24427532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell-resolved blood flow simulations of saccular aneurysms: effects of pulsatility and aspect ratio.
    Czaja B; Závodszky G; Azizi Tarksalooyeh V; Hoekstra AG
    J R Soc Interface; 2018 Sep; 15(146):. PubMed ID: 30257923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can aspect ratio be used to categorize intra-aneurysmal hemodynamics?--A study of elastase induced aneurysms in rabbit.
    Zeng Z; Durka MJ; Kallmes DF; Ding Y; Robertson AM
    J Biomech; 2011 Nov; 44(16):2809-16. PubMed ID: 21925661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemodynamics of the normal aorta compared to fusiform and saccular abdominal aortic aneurysms with emphasis on a potential thrombus formation mechanism.
    Biasetti J; Gasser TC; Auer M; Hedin U; Labruto F
    Ann Biomed Eng; 2010 Feb; 38(2):380-90. PubMed ID: 19936925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Velocity profile and wall shear stress of saccular aneurysms at the anterior communicating artery.
    Yamaguchi R; Ujiie H; Haida S; Nakazawa N; Hori T
    Heart Vessels; 2008 Jan; 23(1):60-6. PubMed ID: 18273548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Platelet dynamics in three-dimensional simulation of whole blood.
    Vahidkhah K; Diamond SL; Bagchi P
    Biophys J; 2014 Jun; 106(11):2529-40. PubMed ID: 24896133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steady flow in an aneurysm model: correlation between fluid dynamics and blood platelet deposition.
    Bluestein D; Niu L; Schoephoerster RT; Dewanjee MK
    J Biomech Eng; 1996 Aug; 118(3):280-6. PubMed ID: 8872248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of local geometry and fluid dynamics on regional platelet deposition on artificial surfaces.
    Schoephoerster RT; Oynes F; Nunez G; Kapadvanjwala M; Dewanjee MK
    Arterioscler Thromb; 1993 Dec; 13(12):1806-13. PubMed ID: 8241101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of size and shape (aspect ratio) on the hemodynamics of saccular aneurysms: a possible index for surgical treatment of intracranial aneurysms.
    Ujiie H; Tachibana H; Hiramatsu O; Hazel AL; Matsumoto T; Ogasawara Y; Nakajima H; Hori T; Takakura K; Kajiya F
    Neurosurgery; 1999 Jul; 45(1):119-29; discussion 129-30. PubMed ID: 10414574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of the hemodynamic effects of flow diverters on wide-necked and narrow-necked cerebral aneurysms.
    Wu YF; Yang PF; Shen J; Huang QH; Zhang X; Qian Y; Liu JM
    J Clin Neurosci; 2012 Nov; 19(11):1520-4. PubMed ID: 22704947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Platelet motion near a vessel wall or thrombus surface in two-dimensional whole blood simulations.
    Skorczewski T; Erickson LC; Fogelson AL
    Biophys J; 2013 Apr; 104(8):1764-72. PubMed ID: 23601323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effects of flow diverter with low porosity on cerebral aneurysms: a numerical stimulative study].
    Huang QH; Yang PF; Zhang X; Shi Y; Shao XM; Liu JM
    Zhonghua Yi Xue Za Zhi; 2010 Apr; 90(15):1024-7. PubMed ID: 20646519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemodynamics of Flow Diverters.
    Dholakia R; Sadasivan C; Fiorella DJ; Woo HH; Lieber BB
    J Biomech Eng; 2017 Feb; 139(2):. PubMed ID: 27727400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of blood particle deposition models for non-parallel flow domains.
    Worth Longest P; Kleinstreuer C
    J Biomech; 2003 Mar; 36(3):421-30. PubMed ID: 12594990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A proposed parent vessel geometry-based categorization of saccular intracranial aneurysms: computational flow dynamics analysis of the risk factors for lesion rupture.
    Hassan T; Timofeev EV; Saito T; Shimizu H; Ezura M; Matsumoto Y; Takayama K; Tominaga T; Takahashi A
    J Neurosurg; 2005 Oct; 103(4):662-80. PubMed ID: 16266049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical modeling of the flow in intracranial aneurysms: prediction of regions prone to thrombus formation.
    Rayz VL; Boussel L; Lawton MT; Acevedo-Bolton G; Ge L; Young WL; Higashida RT; Saloner D
    Ann Biomed Eng; 2008 Nov; 36(11):1793-804. PubMed ID: 18787954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low wall shear stress predominates at sites of abdominal aortic aneurysm rupture.
    Boyd AJ; Kuhn DC; Lozowy RJ; Kulbisky GP
    J Vasc Surg; 2016 Jun; 63(6):1613-9. PubMed ID: 25752691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo visualization and analysis of 3-D hemodynamics in cerebral aneurysms with flow-sensitized 4-D MR imaging at 3 T.
    Meckel S; Stalder AF; Santini F; Radü EW; Rüfenacht DA; Markl M; Wetzel SG
    Neuroradiology; 2008 Jun; 50(6):473-84. PubMed ID: 18350286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemodynamic models of cerebral aneurysms for assessment of effect of vessel geometry on risk of rupture.
    Avolio A; Farnoush A; Morgan M; Qian Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2351-3. PubMed ID: 19965184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing flow diversion for cerebral aneurysm treatment using a single flow diverter.
    Xiang J; Ma D; Snyder KV; Levy EI; Siddiqui AH; Meng H
    Neurosurgery; 2014 Sep; 75(3):286-94; discussion 294. PubMed ID: 24867201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.