These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 24427880)

  • 1. Microwave-assisted chemical reduction routes for direct synthesis of (fct) L1 phase of Fe-Pt.
    Acharya S; Singh K
    J Microw Power Electromagn Energy; 2011; 45(2):63-9. PubMed ID: 24427880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beneficial effects of microwave-assisted heating versus conventional heating in noble metal nanoparticle synthesis.
    Dahal N; García S; Zhou J; Humphrey SM
    ACS Nano; 2012 Nov; 6(11):9433-46. PubMed ID: 23033897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel nanohybrids derived from the attachment of FePt nanoparticles on carbon nanotubes.
    Tsoufis T; Tomou A; Gournis D; Douvalis AP; Panagiotopoulos I; Kooi B; Georgakilas V; Arfaoui I; Bakas T
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5942-51. PubMed ID: 19198330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Templated assembly of Co-Pt nanoparticles via thermal and laser-induced dewetting of bilayer metal films.
    Oh YJ; Kim JH; Thompson CV; Ross CA
    Nanoscale; 2013 Jan; 5(1):401-7. PubMed ID: 23175433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrocatalysts of Pt-TiO2 prepared by sol-gel and microwave-assisted polyol method for the oxygen reduction reaction in 0.5 M H2SO4.
    García-Contreras MA; Fernández-Valverde SM
    J Microw Power Electromagn Energy; 2011; 45(4):188-92. PubMed ID: 24428108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase transformation of VO2 nanoparticles assisted by microwave heating.
    Phoempoon P; Sikong L
    ScientificWorldJournal; 2014; 2014():841418. PubMed ID: 24688438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave assisted sintering of Al-Cu-Mg-Si-Sn alloy.
    Padmavathi C; Upadhyaya A; Agrawal D
    J Microw Power Electromagn Energy; 2012; 46(3):115-27. PubMed ID: 24432468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-temperature solution synthesis of chemically functional ferromagnetic FePtAu nanoparticles.
    Kinge S; Gang T; Naber WJ; Boschker H; Rijnders G; Reinhoudt DN; van der Wiel WG
    Nano Lett; 2009 Sep; 9(9):3220-4. PubMed ID: 19691342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly luminescent PbS/ZnS nanoparticles synthesized by a microwave method.
    Serrano T; Vazquez A; Gómez I
    J Microw Power Electromagn Energy; 2013; 47(2):102-9. PubMed ID: 24779144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction.
    Kim J; Lee Y; Sun S
    J Am Chem Soc; 2010 Apr; 132(14):4996-7. PubMed ID: 20297818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attractive force of castable iron-platinum magnetic alloys.
    Watanabe I; Tanaka Y; Fukunaga H; Hisatsune K; Atsuta M
    Dent Mater; 2001 May; 17(3):197-200. PubMed ID: 11257291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tellurium nanotubes synthesized with microwave-assisted monosaccharide reduction method.
    Liu T; Zhang G; Su X; Chen X; Wang D; Qin J
    J Nanosci Nanotechnol; 2007 Jul; 7(7):2500-5. PubMed ID: 17663271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced magnetization in highly crystalline and atomically mixed bcc Fe-Co nanoalloys prepared by hydrogen reduction of oxide composites.
    Sharif MJ; Yamauchi M; Toh S; Matsumura S; Noro S; Kato K; Takata M; Tsukuda T
    Nanoscale; 2013 Feb; 5(4):1489-93. PubMed ID: 23334346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave assisted synthesis and characterization of barium titanate nanoparticles for multi layered ceramic capacitor applications.
    Thirumalai S; Shanmugavel BP
    J Microw Power Electromagn Energy; 2011; 45(3):121-7. PubMed ID: 24427875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphology and surface plasma changes of Au-Pt bimetallic nanoparticles.
    Chen HM; Peng HC; Liu RS; Hu SF; Sheu HS
    J Nanosci Nanotechnol; 2006 May; 6(5):1411-5. PubMed ID: 16792373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct synthesis of water-dispersible FePt nanoparticles capped with L-cysteine.
    Mori K; Kondo Y; Yamashita H
    J Nanosci Nanotechnol; 2010 Jan; 10(1):222-6. PubMed ID: 20352837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of monodisperse FePt alloy nanocrystals using air-stable precursors: fatty acids as alloying mediator and reductant for Fe3+ precursors.
    Zhao F; Rutherford M; Grisham SY; Peng X
    J Am Chem Soc; 2009 Apr; 131(14):5350-8. PubMed ID: 19301824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, shape control, and methanol electro-oxidation properties of Pt-Zn alloy and Pt3Zn intermetallic nanocrystals.
    Kang Y; Pyo JB; Ye X; Gordon TR; Murray CB
    ACS Nano; 2012 Jun; 6(6):5642-7. PubMed ID: 22559911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable properties of PtxFe1-x electrocatalysts and their catalytic activity towards the oxygen reduction reaction.
    Lai FJ; Chou HL; Sarma LS; Wang DY; Lin YC; Lee JF; Hwang BJ; Chen CC
    Nanoscale; 2010 Apr; 2(4):573-81. PubMed ID: 20644761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructure and magnetic properties of Fe(x)Ni(1-x) alloy nanoplatelets.
    Li J; Qin Y; Kou X; Huang J
    J Nanosci Nanotechnol; 2005 Oct; 5(10):1699-706. PubMed ID: 16245531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.