These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 24428197)

  • 1. ReaxFF study of the oxidation of lignin model compounds for the most common linkages in softwood in view of carbon fiber production.
    Beste A
    J Phys Chem A; 2014 Feb; 118(5):803-14. PubMed ID: 24428197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nature and kinetic analysis of carbon-carbon bond fragmentation reactions of cation radicals derived from SET-oxidation of lignin model compounds.
    Cho DW; Parthasarathi R; Pimentel AS; Maestas GD; Park HJ; Yoon UC; Dunaway-Mariano D; Gnanakaran S; Langan P; Mariano PS
    J Org Chem; 2010 Oct; 75(19):6549-62. PubMed ID: 20831160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Thermal Oxidative Stabilization on the Performance of Lignin-Based Carbon Nanofiber Mats.
    Cho M; Ko FK; Renneckar S
    ACS Omega; 2019 Mar; 4(3):5345-5355. PubMed ID: 30949618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kraft lignin chain extension chemistry via propargylation, oxidative coupling, and Claisen rearrangement.
    Sen S; Sadeghifar H; Argyropoulos DS
    Biomacromolecules; 2013 Oct; 14(10):3399-408. PubMed ID: 23962343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First principle and ReaxFF molecular dynamics investigations of formaldehyde dissociation on Fe(100) surface.
    Yamada T; Phelps DK; van Duin AC
    J Comput Chem; 2013 Sep; 34(23):1982-96. PubMed ID: 23804527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational study of bond dissociation enthalpies for lignin model compounds. Substituent effects in phenethyl phenyl ethers.
    Beste A; Buchanan AC
    J Org Chem; 2009 Apr; 74(7):2837-41. PubMed ID: 19260664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the Impact of Poly(ethylene oxide) on the Assembly of Lignin in Solution toward Improved Carbon Fiber Production.
    Imel AE; Naskar AK; Dadmun MD
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3200-7. PubMed ID: 26756927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Initiation mechanisms and kinetics of pyrolysis and combustion of JP-10 hydrocarbon jet fuel.
    Chenoweth K; van Duin AC; Dasgupta S; Goddard WA
    J Phys Chem A; 2009 Mar; 113(9):1740-6. PubMed ID: 19209880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initial Reactivity of Linkages and Monomer Rings in Lignin Pyrolysis Revealed by ReaxFF Molecular Dynamics.
    Zhang T; Li X; Guo L
    Langmuir; 2017 Oct; 33(42):11646-11657. PubMed ID: 28838235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ReaxFF-molecular dynamics simulations of non-oxidative and non-catalyzed thermal decomposition of methane at high temperatures.
    Lümmen N
    Phys Chem Chem Phys; 2010 Jul; 12(28):7883-93. PubMed ID: 20505869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revealing the fate of the phenylcoumaran linkage during lignin oxidation reactions.
    Lahive CW; Lancefield CS; Codina A; Kamer PCJ; Westwood NJ
    Org Biomol Chem; 2018 Mar; 16(11):1976-1982. PubMed ID: 29498726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pattern of cell wall deterioration in lignocellulose fibers throughout enzymatic cellulose hydrolysis.
    Li X; Clarke K; Li K; Chen A
    Biotechnol Prog; 2012; 28(6):1389-99. PubMed ID: 22887935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes.
    Nielson KD; van Duin AC; Oxgaard J; Deng WQ; Goddard WA
    J Phys Chem A; 2005 Jan; 109(3):493-9. PubMed ID: 16833370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field.
    Chenoweth K; Cheung S; van Duin AC; Goddard WA; Kober EM
    J Am Chem Soc; 2005 May; 127(19):7192-202. PubMed ID: 15884961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ReaxFF molecular dynamics simulations of oxidation of toluene at high temperatures.
    Cheng XM; Wang QD; Li JQ; Wang JB; Li XY
    J Phys Chem A; 2012 Oct; 116(40):9811-8. PubMed ID: 22998396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of carbons derived from cellulose and lignin and their oxidative behavior.
    Xie X; Goodell B; Zhang D; Nagle DC; Qian Y; Peterson ML; Jellison J
    Bioresour Technol; 2009 Mar; 100(5):1797-802. PubMed ID: 19027291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methanol fractionation of softwood Kraft lignin: impact on the lignin properties.
    Saito T; Perkins JH; Vautard F; Meyer HM; Messman JM; Tolnai B; Naskar AK
    ChemSusChem; 2014 Jan; 7(1):221-8. PubMed ID: 24458739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lignin-based carbon fibers: Insight into structural evolution from lignin pretreatment, fiber forming, to pre-oxidation and carbonization.
    Jia G; Innocent MT; Yu Y; Hu Z; Wang X; Xiang H; Zhu M
    Int J Biol Macromol; 2023 Jan; 226():646-659. PubMed ID: 36521701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive accelerated ReaxFF reactive dynamics with validation from simulating hydrogen combustion.
    Cheng T; Jaramillo-Botero A; Goddard WA; Sun H
    J Am Chem Soc; 2014 Jul; 136(26):9434-42. PubMed ID: 24885152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.