These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 24429133)
1. Proteomic analysis of pakchoi leaves and roots under glycine-nitrogen conditions. Wang X; Tang D; Huang D Plant Physiol Biochem; 2014 Feb; 75():96-104. PubMed ID: 24429133 [TBL] [Abstract][Full Text] [Related]
2. Proteomic analysis of Citrus sinensis roots and leaves in response to long-term magnesium-deficiency. Peng HY; Qi YP; Lee J; Yang LT; Guo P; Jiang HX; Chen LS BMC Genomics; 2015 Mar; 16(1):253. PubMed ID: 25887480 [TBL] [Abstract][Full Text] [Related]
3. Genotypic differences in nitrate uptake, translocation and assimilation of two Chinese cabbage cultivars [Brassica campestris L. ssp. Chinensis (L.)]. Tang Y; Sun X; Hu C; Tan Q; Zhao X Plant Physiol Biochem; 2013 Sep; 70():14-20. PubMed ID: 23770590 [TBL] [Abstract][Full Text] [Related]
4. Comparative analysis of the chloroplast proteomes of a wheat (Triticum aestivum L.) single seed descent line and its parents. He ZH; Li HW; Shen Y; Li ZS; Mi H J Plant Physiol; 2013 Sep; 170(13):1139-47. PubMed ID: 23683508 [TBL] [Abstract][Full Text] [Related]
5. Proteomic analysis of chromium stress and sulfur deficiency responses in leaves of two canola (Brassica napus L.) cultivars differing in Cr(VI) tolerance. Yıldız M; Terzi H Ecotoxicol Environ Saf; 2016 Feb; 124():255-266. PubMed ID: 26546907 [TBL] [Abstract][Full Text] [Related]
6. Proteomics research on the effects of applying selenium to apple leaves on photosynthesis. Ning CJ; Ding N; Wu GL; Meng HJ; Wang YN; Wang QH Plant Physiol Biochem; 2013 Sep; 70():1-6. PubMed ID: 23770588 [TBL] [Abstract][Full Text] [Related]
7. Light intensity affects the uptake and metabolism of glycine by pakchoi (Brassica chinensis L.). Ma Q; Cao X; Wu L; Mi W; Feng Y Sci Rep; 2016 Feb; 6():21200. PubMed ID: 26882864 [TBL] [Abstract][Full Text] [Related]
8. Exogenous glycine inhibits root elongation and reduces nitrate-N uptake in pak choi (Brassica campestris ssp. Chinensis L.). Han R; Khalid M; Juan J; Huang D PLoS One; 2018; 13(9):e0204488. PubMed ID: 30240454 [TBL] [Abstract][Full Text] [Related]
9. Physiological and Differential Proteomic Analyses of Imitation Drought Stress Response in Li H; Li Y; Ke Q; Kwak SS; Zhang S; Deng X Int J Mol Sci; 2020 Dec; 21(23):. PubMed ID: 33271965 [TBL] [Abstract][Full Text] [Related]
10. Electrical conductivity of nutrient solution influenced photosynthesis, quality, and antioxidant enzyme activity of pakchoi (Brassica campestris L. ssp. Chinensis) in a hydroponic system. Ding X; Jiang Y; Zhao H; Guo D; He L; Liu F; Zhou Q; Nandwani D; Hui D; Yu J PLoS One; 2018; 13(8):e0202090. PubMed ID: 30157185 [TBL] [Abstract][Full Text] [Related]
11. Analysis of arsenic stress-induced differentially expressed proteins in rice leaves by two-dimensional gel electrophoresis coupled with mass spectrometry. Ahsan N; Lee DG; Kim KH; Alam I; Lee SH; Lee KW; Lee H; Lee BH Chemosphere; 2010 Jan; 78(3):224-31. PubMed ID: 19948354 [TBL] [Abstract][Full Text] [Related]
12. Physiological and comparative proteomic analysis reveals different drought responses in roots and leaves of drought-tolerant wild wheat (Triticum boeoticum). Liu H; Sultan MA; Liu XL; Zhang J; Yu F; Zhao HX PLoS One; 2015; 10(4):e0121852. PubMed ID: 25859656 [TBL] [Abstract][Full Text] [Related]
13. A comparative proteomic analysis of tomato leaves in response to waterlogging stress. Ahsan N; Lee DG; Lee SH; Kang KY; Bahk JD; Choi MS; Lee IJ; Renaut J; Lee BH Physiol Plant; 2007 Dec; 131(4):555-70. PubMed ID: 18251847 [TBL] [Abstract][Full Text] [Related]
14. Proteomic characterization of copper stress response in Elsholtzia splendens roots and leaves. Li F; Shi J; Shen C; Chen G; Hu S; Chen Y Plant Mol Biol; 2009 Oct; 71(3):251-63. PubMed ID: 19629718 [TBL] [Abstract][Full Text] [Related]
15. Proteomic Analysis of Vernalization Responsive Proteins in Winter Wheat Jing841. Feng Y; Kong B; Zhang J; Chen X; Yuan J; Tang X; Ma C Protein Pept Lett; 2018; 25(3):260-274. PubMed ID: 29345567 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of protein pattern changes in roots and leaves of Zea mays plants in response to nitrate availability by two-dimensional gel electrophoresis analysis. Prinsi B; Negri AS; Pesaresi P; Cocucci M; Espen L BMC Plant Biol; 2009 Aug; 9():113. PubMed ID: 19698183 [TBL] [Abstract][Full Text] [Related]
17. Identification of proteins associated with water-deficit tolerance in C4 perennial grass species, Cynodon dactylon×Cynodon transvaalensis and Cynodon dactylon. Zhao Y; Du H; Wang Z; Huang B Physiol Plant; 2011 Jan; 141(1):40-55. PubMed ID: 21029106 [TBL] [Abstract][Full Text] [Related]
18. An integrated proteomic approach to decipher the effect of methyl jasmonate elicitation on the proteome of Silybum marianum L. hairy roots. Gharechahi J; Khalili M; Hasanloo T; Salekdeh GH Plant Physiol Biochem; 2013 Sep; 70():115-22. PubMed ID: 23771036 [TBL] [Abstract][Full Text] [Related]
19. Proteomic responses of drought-tolerant and drought-sensitive cotton varieties to drought stress. Zhang H; Ni Z; Chen Q; Guo Z; Gao W; Su X; Qu Y Mol Genet Genomics; 2016 Jun; 291(3):1293-303. PubMed ID: 26941218 [TBL] [Abstract][Full Text] [Related]
20. Effects of glucose on the uptake and metabolism of glycine in pakchoi (Brassica chinensis L.) exposed to various nitrogen sources. Ma Q; Cao X; Xie Y; Xiao H; Tan X; Wu L BMC Plant Biol; 2017 Mar; 17(1):58. PubMed ID: 28253854 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]