These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 24429549)
1. Equipment for large-scale mammalian cell culture. Ozturk SS Adv Biochem Eng Biotechnol; 2014; 139():69-92. PubMed ID: 24429549 [TBL] [Abstract][Full Text] [Related]
2. Cell culture process operations for recombinant protein production. Abu-Absi S; Xu S; Graham H; Dalal N; Boyer M; Dave K Adv Biochem Eng Biotechnol; 2014; 139():35-68. PubMed ID: 24153406 [TBL] [Abstract][Full Text] [Related]
3. Product quality considerations for mammalian cell culture process development and manufacturing. Gramer MJ Adv Biochem Eng Biotechnol; 2014; 139():123-66. PubMed ID: 23748351 [TBL] [Abstract][Full Text] [Related]
4. Fed-batch bioreactor process scale-up from 3-L to 2,500-L scale for monoclonal antibody production from cell culture. Yang JD; Lu C; Stasny B; Henley J; Guinto W; Gonzalez C; Gleason J; Fung M; Collopy B; Benjamino M; Gangi J; Hanson M; Ille E Biotechnol Bioeng; 2007 Sep; 98(1):141-54. PubMed ID: 17657776 [TBL] [Abstract][Full Text] [Related]
5. Development and characterization of a cell culture manufacturing process using quality by design (QbD) principles. Marasco DM; Gao J; Griffiths K; Froggatt C; Wang T; Wei G Adv Biochem Eng Biotechnol; 2014; 139():93-121. PubMed ID: 23828505 [TBL] [Abstract][Full Text] [Related]
6. Conversion of a CHO cell culture process from perfusion to fed-batch technology without altering product quality. Meuwly F; Weber U; Ziegler T; Gervais A; Mastrangeli R; Crisci C; Rossi M; Bernard A; von Stockar U; Kadouri A J Biotechnol; 2006 May; 123(1):106-16. PubMed ID: 16324762 [TBL] [Abstract][Full Text] [Related]
7. Optimization of insect cell based protein production processes - online monitoring, expression systems, scale up. Druzinec D; Salzig D; Brix A; Kraume M; Vilcinskas A; Kollewe C; Czermak P Adv Biochem Eng Biotechnol; 2013; 136():65-100. PubMed ID: 23995041 [TBL] [Abstract][Full Text] [Related]
8. Mammalian cell line developments in speed and efficiency. Estes S; Melville M Adv Biochem Eng Biotechnol; 2014; 139():11-33. PubMed ID: 24196317 [TBL] [Abstract][Full Text] [Related]
9. Development of an in situ detachment protocol of Vero cells grown on Cytodex1 microcarriers under animal component-free conditions in stirred bioreactor. Rourou S; Riahi N; Majoul S; Trabelsi K; Kallel H Appl Biochem Biotechnol; 2013 Aug; 170(7):1724-37. PubMed ID: 23737305 [TBL] [Abstract][Full Text] [Related]
10. A flexible culture process for production of the green microalga Scenedesmus dimorphus rich in protein, carbohydrate or lipid. Wang L; Li Y; Sommerfeld M; Hu Q Bioresour Technol; 2013 Feb; 129():289-95. PubMed ID: 23262002 [TBL] [Abstract][Full Text] [Related]
11. Production of human alpha-1-antitrypsin from transgenic rice cell culture in a membrane bioreactor. McDonald KA; Hong LM; Trombly DM; Xie Q; Jackman AP Biotechnol Prog; 2005; 21(3):728-34. PubMed ID: 15932249 [TBL] [Abstract][Full Text] [Related]
12. Human embryonic stem cell-derived mesodermal progenitors display substantially increased tissue formation compared to human mesenchymal stem cells under dynamic culture conditions in a packed bed/column bioreactor. de Peppo GM; Sladkova M; Sjövall P; Palmquist A; Oudina K; Hyllner J; Thomsen P; Petite H; Karlsson C Tissue Eng Part A; 2013 Jan; 19(1-2):175-87. PubMed ID: 22924642 [TBL] [Abstract][Full Text] [Related]
13. Glucose-limited high cell density cultivations from small to pilot plant scale using an enzyme-controlled glucose delivery system. Glazyrina J; Krause M; Junne S; Glauche F; Storm D; Neubauer P N Biotechnol; 2012 Jan; 29(2):235-42. PubMed ID: 22100433 [TBL] [Abstract][Full Text] [Related]
14. Bioreactors and bioseparation. Zhang S; Cao X; Chu J; Qian J; Zhuang Y Adv Biochem Eng Biotechnol; 2010; 122():105-50. PubMed ID: 20396995 [TBL] [Abstract][Full Text] [Related]
15. Separation efficiency of a vacuum gas lift for microalgae harvesting. Barrut B; Blancheton JP; Muller-Feuga A; René F; Narváez C; Champagne JY; Grasmick A Bioresour Technol; 2013 Jan; 128():235-40. PubMed ID: 23196244 [TBL] [Abstract][Full Text] [Related]
16. Operator training in recombinant protein production using a structured simulator model. Gerlach I; Brüning S; Gustavsson R; Mandenius CF; Hass VC J Biotechnol; 2014 May; 177():53-9. PubMed ID: 24630856 [TBL] [Abstract][Full Text] [Related]
17. Production of recombinant proteins by vaccinia virus in a microcarrier based mammalian cell perfusion bioreactor. Bleckwenn NA; Golding H; Bentley WE; Shiloach J Biotechnol Bioeng; 2005 Jun; 90(6):663-74. PubMed ID: 15858791 [TBL] [Abstract][Full Text] [Related]
18. A systematic approach for scale-down model development and characterization of commercial cell culture processes. Li F; Hashimura Y; Pendleton R; Harms J; Collins E; Lee B Biotechnol Prog; 2006; 22(3):696-703. PubMed ID: 16739951 [TBL] [Abstract][Full Text] [Related]
19. Insect cell culture for industrial production of recombinant proteins. Ikonomou L; Schneider YJ; Agathos SN Appl Microbiol Biotechnol; 2003 Jul; 62(1):1-20. PubMed ID: 12733003 [TBL] [Abstract][Full Text] [Related]
20. Optimizing capacity utilization by large scale 3000 L perfusion in seed train bioreactors. Pohlscheidt M; Jacobs M; Wolf S; Thiele J; Jockwer A; Gabelsberger J; Jenzsch M; Tebbe H; Burg J Biotechnol Prog; 2013; 29(1):222-9. PubMed ID: 23225663 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]