These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 24429840)

  • 1. Intravital video microscopy measurements of retinal blood flow in mice.
    Harris NR; Watts MN; Leskova W
    J Vis Exp; 2013 Dec; (82):51110. PubMed ID: 24429840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered Retinal Hemodynamics and Mean Circulation Time in Spontaneously Hypertensive Rats.
    Leskova W; Warar R; Harris NR
    Invest Ophthalmol Vis Sci; 2020 Aug; 61(10):12. PubMed ID: 32761138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blood flow in single surface arterioles and venules on the mouse somatosensory cortex measured with videomicroscopy, fluorescent dextrans, nonoccluding fluorescent beads, and computer-assisted image analysis.
    Rovainen CM; Woolsey TA; Blocher NC; Wang DB; Robinson OF
    J Cereb Blood Flow Metab; 1993 May; 13(3):359-71. PubMed ID: 7683023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of retinal blood vessel diameters and arteriovenous ratios in systemic hypertension: comparison of different calculation formulae.
    Hemminki V; Kähönen M; Tuomisto MT; Turjanmaa V; Uusitalo H
    Graefes Arch Clin Exp Ophthalmol; 2007 Jan; 245(1):8-17. PubMed ID: 16832652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of potential vessel segmentation pitfalls in the analysis of blood flow velocity using the Retinal Function Imager.
    Somfai GM; Tian J; DeBuc DC
    Graefes Arch Clin Exp Ophthalmol; 2016 Jun; 254(6):1075-81. PubMed ID: 26373549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A technique for tracking intravascular fluorescent microspheres for the determination of arteriolar blood flow in rats.
    Lynn CN; Ahmed J
    Biomed Sci Instrum; 2006; 42():90-5. PubMed ID: 16817591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intravital microscopic observations of 15-microm microspheres lodging in the pulmonary microcirculation.
    Lamm WJ; Bernard SL; Wagner WW; Glenny RW
    J Appl Physiol (1985); 2005 Jun; 98(6):2242-8. PubMed ID: 15705726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of K+ and Cl- channels in the regulation of retinal arteriolar tone and blood flow.
    Needham M; McGahon MK; Bankhead P; Gardiner TA; Scholfield CN; Curtis TM; McGeown JG
    Invest Ophthalmol Vis Sci; 2014 Apr; 55(4):2157-65. PubMed ID: 24609622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and hemodynamic analysis of the mouse retinal microcirculation.
    Paques M; Tadayoni R; Sercombe R; Laurent P; Genevois O; Gaudric A; Vicaut E
    Invest Ophthalmol Vis Sci; 2003 Nov; 44(11):4960-7. PubMed ID: 14578423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red blood cell velocity measurements of complete capillary in finger nail-fold using optical flow estimation.
    Wu CC; Zhang G; Huang TC; Lin KP
    Microvasc Res; 2009 Dec; 78(3):319-24. PubMed ID: 19647002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of retinal arteriolar and venular variability in healthy subjects.
    Rose PA; Hudson C
    Microvasc Res; 2007 Jan; 73(1):35-8. PubMed ID: 17137608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On pulse-wave propagation in the ocular circulation.
    Gugleta K; Kochkorov A; Katamay R; Zawinka C; Flammer J; Orgul S
    Invest Ophthalmol Vis Sci; 2006 Sep; 47(9):4019-25. PubMed ID: 16936118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fiber optical spatial filter anemometry--intravital measurement of red blood flow velocity (RBCV) in the microcirculation.
    Hungerer S; Nolte D; Elstner B; Pröhl M; Messmer K
    Artif Cells Blood Substit Immobil Biotechnol; 2010 May; 38(3):119-28. PubMed ID: 20297922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Full-field flicker evoked changes in parafoveal retinal blood flow.
    Warner RL; de Castro A; Sawides L; Gast T; Sapoznik K; Luo T; Burns SA
    Sci Rep; 2020 Sep; 10(1):16051. PubMed ID: 32994535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Confocal scanning laser Doppler flowmetry in the rat retina: origin of flow signals and dependence on scan depth.
    Chauhan BC; Yu PK; Cringle SJ; Yu DY
    Arch Ophthalmol; 2006 Mar; 124(3):397-402. PubMed ID: 16534060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intravital microscopy of the murine pulmonary microcirculation.
    Tabuchi A; Mertens M; Kuppe H; Pries AR; Kuebler WM
    J Appl Physiol (1985); 2008 Feb; 104(2):338-46. PubMed ID: 18006870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Confocal laser Doppler flowmeter measurements in a controlled flow environment in an isolated perfused eye.
    Townsend R; Cringle SJ; Morgan WH; Chauhan BC; Yu DY
    Exp Eye Res; 2006 Jan; 82(1):65-73. PubMed ID: 15993409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ozagrel attenuates early streptozotocin-induced constriction of arterioles in the mouse retina.
    Wright WS; Harris NR
    Exp Eye Res; 2008 Mar; 86(3):528-36. PubMed ID: 18262522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of big endothelin-1 in comparison with endothelin-1 on the microvascular blood flow velocity and diameter of rat mesentery in vivo.
    Abdelhalim MA
    Microvasc Res; 2006 Nov; 72(3):108-12. PubMed ID: 17028040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualization and quantitative analysis of leukocyte dynamics in retinal microcirculation of rats.
    Nishiwaki H; Ogura Y; Kimura H; Kiryu J; Miyamoto K; Matsuda N
    Invest Ophthalmol Vis Sci; 1996 Jun; 37(7):1341-7. PubMed ID: 8641837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.