These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 24429994)

  • 1. Mode of growth ofRhizopus oligosporus on a model substrate in solid-state fermentation.
    Mitchell DA; Greenfield PF; Doelle HW
    World J Microbiol Biotechnol; 1990 Jun; 6(2):201-8. PubMed ID: 24429994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A semimechanistic mathematical model for growth of Rhizopus oligosporus in a model solid-state fermentation system.
    Mitchell DA; Do DD; Greenfield PF; Doelle HW
    Biotechnol Bioeng; 1991 Aug; 38(4):353-62. PubMed ID: 18600771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of confocal microscopy to follow the development of penetrative hyphae during growth of Rhizopus oligosporus in an artificial solid-state fermentation system.
    Nopharatana M; Mitchell DA; Howes T
    Biotechnol Bioeng; 2003 Feb; 81(4):438-47. PubMed ID: 12491529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial degradation and utilization of cassava peel.
    Ofuya CO; Nwajiuba CJ
    World J Microbiol Biotechnol; 1990 Jun; 6(2):144-8. PubMed ID: 24429985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of confocal scanning laser microscopy to measure the concentrations of aerial and penetrative hyphae during growth of Rhizopus oligosporus on a solid surface.
    Nopharatana M; Mitchell DA; Howes T
    Biotechnol Bioeng; 2003 Oct; 84(1):71-7. PubMed ID: 12910545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient hydrolysis of raw starch and ethanol fermentation: a novel raw starch-digesting glucoamylase from
    Xu QS; Yan YS; Feng JX
    Biotechnol Biofuels; 2016; 9():216. PubMed ID: 27777618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of aerial hyphae of Aspergillus oryzae to respiration in a model solid-state fermentation system.
    Rahardjo YS; Weber FJ; le Comte EP; Tramper J; Rinzema A
    Biotechnol Bioeng; 2002 Jun; 78(5):539-44. PubMed ID: 12115123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of physiological factors for direct saccharification of cassava starch to glucose by Rhizopus oligosporus 145f.
    Garg SK; Doelle HW
    Biotechnol Bioeng; 1989 Mar; 33(8):948-54. PubMed ID: 18588008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production and characterization of glucoamylase from fungus Aspergillus awamori expressed in yeast Saccharomyces cerevisiae using different carbon sources.
    Pavezzi FC; Gomes E; da Silva R
    Braz J Microbiol; 2008 Jan; 39(1):108-14. PubMed ID: 24031189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intra-particle oxygen diffusion limitation in solid-state fermentation.
    Oostra J; le Comte EP; van den Heuvel JC; Tramper J; Rinzema A
    Biotechnol Bioeng; 2001 Oct; 75(1):13-24. PubMed ID: 11536122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time monitoring of the accretion of Rhizopus oligosporus biomass during the solid-substrate tempe fermentation.
    Davey CL; PeƱaloza W; Kell DB; Hedger JN
    World J Microbiol Biotechnol; 1991 Mar; 7(2):248-59. PubMed ID: 24424940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of pore diffusion limitation on dextrin hydrolysis by immobilized glucoamylase.
    Lee DD; Lee GK; Reilly PJ; Lee YY
    Biotechnol Bioeng; 1980 Jan; 22(1):1-17. PubMed ID: 6985801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced production of raw starch degrading enzyme using agro-industrial waste mixtures by thermotolerant Rhizopus microsporus for raw cassava chip saccharification in ethanol production.
    Trakarnpaiboon S; Srisuk N; Piyachomkwan K; Sakai K; Kitpreechavanich V
    Prep Biochem Biotechnol; 2017 Sep; 47(8):813-823. PubMed ID: 28636431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crosslinked enzyme crystals of glucoamylase as a potent catalyst for biotransformations.
    Abraham TE; Joseph JR; Bindhu LB; Jayakumar KK
    Carbohydr Res; 2004 Apr; 339(6):1099-104. PubMed ID: 15063197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application and Analysis of
    Tang X; Luo T; Li X; Yang H; Yang Y; Li J; Xu B; Huang Z
    J Microbiol Biotechnol; 2018 Nov; 28(11):1865-1875. PubMed ID: 30301325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct fermentation of raw starch using a Kluyveromyces marxianus strain that expresses glucoamylase and alpha-amylase to produce ethanol.
    Wang R; Wang D; Gao X; Hong J
    Biotechnol Prog; 2014; 30(2):338-47. PubMed ID: 24478139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of cassava starch hydrolysate on cell growth and lipid accumulation of the heterotrophic microalgae Chlorella protothecoides.
    Wei A; Zhang X; Wei D; Chen G; Wu Q; Yang ST
    J Ind Microbiol Biotechnol; 2009 Nov; 36(11):1383-9. PubMed ID: 19633877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of fermentation with Rhizopus oligosporus on some physico-chemical properties of starch extracts from soybean flour.
    Olanipekun BF; Otunola ET; Adelakun OE; Oyelade OJ
    Food Chem Toxicol; 2009 Jul; 47(7):1401-5. PubMed ID: 19268508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-objective optimization of bioethanol production during cold enzyme starch hydrolysis in very high gravity cassava mash.
    Yingling B; Li C; Honglin W; Xiwen Y; Zongcheng Y
    Bioresour Technol; 2011 Sep; 102(17):8077-84. PubMed ID: 21708462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amylase production by Saccharomycopsis fibuligera A11 in solid-state fermentation for hydrolysis of Cassava starch.
    Chen L; Chi ZM; Chi Z; Li M
    Appl Biochem Biotechnol; 2010 Sep; 162(1):252-63. PubMed ID: 19701612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.