These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 24430025)

  • 1. Otolith signals contribute to inter-individual differences in the perception of gravity-centered space.
    Cian C; Barraud PA; Paillard AC; Hidot S; Denise P; Ventre-Dominey J
    Exp Brain Res; 2014 Mar; 232(3):1037-45. PubMed ID: 24430025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. I. Linear acceleration responses during off-vertical axis rotation.
    Angelaki DE; Hess BJ
    J Neurophysiol; 1996 Jun; 75(6):2405-24. PubMed ID: 8793753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The elevator illusion results from the combination of body orientation and egocentric perception.
    Paillard A; Denise P; Barraud PA; Roux A; Cian C
    Neurosci Lett; 2009 Oct; 464(3):156-9. PubMed ID: 19683558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. II. Inertial detection of angular velocity.
    Angelaki DE; Hess BJ
    J Neurophysiol; 1996 Jun; 75(6):2425-40. PubMed ID: 8793754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gravity dependence of subjective visual vertical variability.
    Tarnutzer AA; Bockisch C; Straumann D; Olasagasti I
    J Neurophysiol; 2009 Sep; 102(3):1657-71. PubMed ID: 19571203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of spatial orientation of the angular vestibulo-ocular reflex by the nodulus and uvula of the vestibulocerebellum.
    Sheliga BM; Yakushin SB; Silvers A; Raphan T; Cohen B
    Ann N Y Acad Sci; 1999 May; 871():94-122. PubMed ID: 10372065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translational otolith-ocular reflex during off-vertical axis rotation in humans.
    Clément G; Wood SJ
    Neurosci Lett; 2016 Mar; 616():65-9. PubMed ID: 26827718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orientation of Listing's plane after hypergravity in humans.
    Nooij SA; Bos JE; Groen EL
    J Vestib Res; 2008; 18(2-3):97-105. PubMed ID: 19126980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motion sickness induced by off-vertical axis rotation (OVAR).
    Dai M; Sofroniou S; Kunin M; Raphan T; Cohen B
    Exp Brain Res; 2010 Jul; 204(2):207-22. PubMed ID: 20535456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural processing of gravito-inertial cues in humans. I. Influence of the semicircular canals following post-rotatory tilt.
    Zupan LH; Peterka RJ; Merfeld DM
    J Neurophysiol; 2000 Oct; 84(4):2001-15. PubMed ID: 11024093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The vestibulo-ocular reflex of the squirrel monkey during eccentric rotation and roll tilt.
    Merfeld DM; Young LR
    Exp Brain Res; 1995; 106(1):111-22. PubMed ID: 8542967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Canal-otolith interactions after off-vertical axis rotations I. Spatial reorientation of horizontal vestibuloocular reflex.
    Jaggi-Schwarz K; Misslisch H; Hess BJ
    J Neurophysiol; 2000 Mar; 83(3):1522-35. PubMed ID: 10712477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial orientation and balance control changes induced by altered gravitoinertial force vectors.
    Kaufman GD; Wood SJ; Gianna CC; Black FO; Paloski WH
    Exp Brain Res; 2001 Apr; 137(3-4):397-410. PubMed ID: 11355385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Egocentric and allocentric alignment tasks are affected by otolith input.
    Tarnutzer AA; Bockisch CJ; Olasagasti I; Straumann D
    J Neurophysiol; 2012 Jun; 107(11):3095-106. PubMed ID: 22442575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of tilt of the gravito-inertial acceleration vector on the angular vestibuloocular reflex during centrifugation.
    Wearne S; Raphan T; Cohen B
    J Neurophysiol; 1999 May; 81(5):2175-90. PubMed ID: 10322058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of gravity on the eye movement response elicited by periodic lateral linear acceleration.
    Hashiba M; Wetzig J; v Baumgarten R; Watanabe S; Baba S
    Microgravity Sci Technol; 1993 Dec; 6(4):282-5. PubMed ID: 11541850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binocular 3D otolith-ocular reflexes: responses of normal chinchillas to tilt and translation.
    Hageman KN; Chow MR; Roberts D; Della Santina CC
    J Neurophysiol; 2020 Jan; 123(1):243-258. PubMed ID: 31747360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ocular and perceptual responses to linear acceleration in microgravity: alterations in otolith function on the COSMOS and Neurolab flights.
    Moore ST; Clément G; Dai M; Raphan T; Solomon D; Cohen B
    J Vestib Res; 2003; 13(4-6):377-93. PubMed ID: 15096679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perception of tilt and ocular torsion of normal human subjects during eccentric rotation.
    Clément G; Maciel F; Deguine O
    Otol Neurotol; 2002 Nov; 23(6):958-66. PubMed ID: 12438863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compensatory and orienting eye movements induced by off-vertical axis rotation (OVAR) in monkeys.
    Kushiro K; Dai M; Kunin M; Yakushin SB; Cohen B; Raphan T
    J Neurophysiol; 2002 Nov; 88(5):2445-62. PubMed ID: 12424285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.