These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 24430075)

  • 1. Production of 2,3-butanediol from wood hydrolysate byKlebsiella pneumoniae.
    Grover BP; Garg SK; Verma J
    World J Microbiol Biotechnol; 1990 Sep; 6(3):328-32. PubMed ID: 24430075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of ethanol from sugars in wood hydrolysate byFusarium oxysporum.
    Joshi A; Garg SK; Verma J
    World J Microbiol Biotechnol; 1990 Mar; 6(1):10-4. PubMed ID: 24429882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive laboratory evolution of Klebsiella pneumoniae for improving 2,3-butanediol production.
    Li H; Zhang G; Dang Y
    Bioengineered; 2016 Nov; 7(6):432-438. PubMed ID: 27442598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whole sugar 2,3-butanediol fermentation for oil palm empty fruit bunches biorefinery by a newly isolated Klebsiella pneumoniae PM2.
    Rehman S; Khairul Islam M; Khalid Khanzada N; Kyoungjin An A; Chaiprapat S; Leu SY
    Bioresour Technol; 2021 Aug; 333():125206. PubMed ID: 33940505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethanol production from eucalyptus wood hemicellulose hydrolysate by Pichia stipitis.
    Ferrari MD; Neirotti E; Albornoz C; Saucedo E
    Biotechnol Bioeng; 1992 Oct; 40(7):753-9. PubMed ID: 18601178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethanol production from sugarcane bagasse hydrolysate using Pichia stipitis.
    Canilha L; Carvalho W; Felipe Md; Silva JB; Giulietti M
    Appl Biochem Biotechnol; 2010 May; 161(1-8):84-92. PubMed ID: 19802721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rice bran extract: an inexpensive nitrogen source for the production of 2G ethanol from sugarcane bagasse hydrolysate.
    Milessi TS; Antunes FA; Chandel AK; Silva SS
    3 Biotech; 2013 Oct; 3(5):373-379. PubMed ID: 28324330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of Chemicals by Klebsiella pneumoniae Using Bamboo Hydrolysate as Feedstock.
    Wei D; Gu J; Zhang Z; Wang C; Wang D; Kim CH; Jiang B; Shi J; Hao J
    J Vis Exp; 2017 Jun; (124):. PubMed ID: 28715380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selection and characterization of a newly isolated thermotolerant Pichia kudriavzevii strain for ethanol production at high temperature from cassava starch hydrolysate.
    Yuangsaard N; Yongmanitchai W; Yamada M; Limtong S
    Antonie Van Leeuwenhoek; 2013 Mar; 103(3):577-88. PubMed ID: 23132277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient bioconversion of 2,3-butanediol into acetoin using Gluconobacter oxydans DSM 2003.
    Wang X; Lv M; Zhang L; Li K; Gao C; Ma C; Xu P
    Biotechnol Biofuels; 2013 Oct; 6(1):155. PubMed ID: 24176113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microaeration enhances productivity of bioethanol from hydrolysate of waste house wood using ethanologenic Escherichia coli KO11.
    Okuda N; Ninomiya K; Takao M; Katakura Y; Shioya S
    J Biosci Bioeng; 2007 Apr; 103(4):350-7. PubMed ID: 17502277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel strategy for integrated utilization of Jerusalem artichoke stalk and tuber for production of 2,3-butanediol by Klebsiella pneumoniae.
    Li D; Dai JY; Xiu ZL
    Bioresour Technol; 2010 Nov; 101(21):8342-7. PubMed ID: 20591660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of deletion of 2,3-butanediol dehydrogenase gene (bdhA) on acetoin production of Bacillus subtilis.
    Zhang J; Zhao X; Zhang J; Zhao C; Liu J; Tian Y; Yang L
    Prep Biochem Biotechnol; 2017 Sep; 47(8):761-767. PubMed ID: 28426331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fermentation of glycerol to 1,3-propanediol and 2,3-butanediol by Klebsiella pneumoniae.
    Biebl H; Zeng AP; Menzel K; Deckwer WD
    Appl Microbiol Biotechnol; 1998 Jul; 50(1):24-9. PubMed ID: 9720196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of 2,3-butanediol by newly isolated Enterobacter cloacae.
    Saha BC; Bothast RJ
    Appl Microbiol Biotechnol; 1999 Sep; 52(3):321-6. PubMed ID: 10531643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Volumetric oxygen transfer coefficient as fermentation control parameter to manipulate the production of either acetoin or D-2,3-butanediol using bakery waste.
    Maina S; Schneider R; Alexandri M; Papapostolou H; Nychas GJ; Koutinas A; Venus J
    Bioresour Technol; 2021 Sep; 335():125155. PubMed ID: 34015563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethanol production from wood hydrolysate using genetically engineered Zymomonas mobilis.
    Yanase H; Miyawaki H; Sakurai M; Kawakami A; Matsumoto M; Haga K; Kojima M; Okamoto K
    Appl Microbiol Biotechnol; 2012 Jun; 94(6):1667-78. PubMed ID: 22573268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of Bacillus subtilis for the co-production of uridine and acetoin.
    Fan X; Wu H; Jia Z; Li G; Li Q; Chen N; Xie X
    Appl Microbiol Biotechnol; 2018 Oct; 102(20):8753-8762. PubMed ID: 30120523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineered E. coli W enables efficient 2,3-butanediol production from glucose and sugar beet molasses using defined minimal medium as economic basis.
    Erian AM; Gibisch M; Pflügl S
    Microb Cell Fact; 2018 Nov; 17(1):190. PubMed ID: 30501633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of genetic modifications and fermentation conditions on 2,3-butanediol production by alkaliphilic Bacillus subtilis.
    Białkowska AM; Jędrzejczak-Krzepkowska M; Gromek E; Krysiak J; Sikora B; Kalinowska H; Kubik C; Schütt F; Turkiewicz M
    Appl Microbiol Biotechnol; 2016 Mar; 100(6):2663-76. PubMed ID: 26590588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.