BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 24430209)

  • 1. The use of lactic acid-producing, malic acid-producing, or malic acid-degrading yeast strains for acidity adjustment in the wine industry.
    Su J; Wang T; Wang Y; Li YY; Li H
    Appl Microbiol Biotechnol; 2014 Mar; 98(6):2395-413. PubMed ID: 24430209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Meeting the consumer challenge through genetically customized wine-yeast strains.
    Pretorius IS; Bauer FF
    Trends Biotechnol; 2002 Oct; 20(10):426-32. PubMed ID: 12220905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. L-(-)-malic acid production by Saccharomyces spp. during the alcoholic fermentation of wine (1).
    Yéramian N; Chaya C; Suárez Lepe JA
    J Agric Food Chem; 2007 Feb; 55(3):912-9. PubMed ID: 17263493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Malo-ethanolic fermentation in grape must by recombinant strains of Saccharomyces cerevisiae.
    Volschenk H; Viljoen-Bloom M; Subden RE; van Vuuren HJ
    Yeast; 2001 Jul; 18(10):963-70. PubMed ID: 11447602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of malic acid by Issatchenkia orientalis KMBL 5774, an acidophilic yeast strain isolated from Korean grape wine pomace.
    Seo SH; Rhee CH; Park HD
    J Microbiol; 2007 Dec; 45(6):521-7. PubMed ID: 18176535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selection and characterization of a Patagonian Pichia kudriavzevii for wine deacidification.
    Del Mónaco SM; Barda NB; Rubio NC; Caballero AC
    J Appl Microbiol; 2014 Aug; 117(2):451-64. PubMed ID: 24844932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of malic acid in wine by immobilized Issatchenkia orientalis cells with oriental oak charcoal and alginate.
    Hong SK; Lee HJ; Park HJ; Hong YA; Rhee IK; Lee WH; Choi SW; Lee OS; Park HD
    Lett Appl Microbiol; 2010 May; 50(5):522-9. PubMed ID: 20337931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Schizosaccharomyces pombe Biotechnological Applications in Winemaking.
    Benito Á; Calderón F; Benito S
    Methods Mol Biol; 2018; 1721():217-226. PubMed ID: 29423860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of volatile acidity of wines by selected yeast strains.
    Vilela-Moura A; Schuller D; Mendes-Faia A; Côrte-Real M
    Appl Microbiol Biotechnol; 2008 Oct; 80(5):881-90. PubMed ID: 18677471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wine yeasts for the future.
    Fleet GH
    FEMS Yeast Res; 2008 Nov; 8(7):979-95. PubMed ID: 18793201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae.
    Comitini F; Gobbi M; Domizio P; Romani C; Lencioni L; Mannazzu I; Ciani M
    Food Microbiol; 2011 Aug; 28(5):873-82. PubMed ID: 21569929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inheritable nature of enological quantitative traits is demonstrated by meiotic segregation of industrial wine yeast strains.
    Marullo P; Bely M; Masneuf-Pomarede I; Aigle M; Dubourdieu D
    FEMS Yeast Res; 2004 May; 4(7):711-9. PubMed ID: 15093774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implications of new research and technologies for malolactic fermentation in wine.
    Sumby KM; Grbin PR; Jiranek V
    Appl Microbiol Biotechnol; 2014 Oct; 98(19):8111-32. PubMed ID: 25142694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Malolactic fermentation of wines with immobilised lactic acid bacteria - influence of concentration, type of support material and storage conditions.
    Genisheva Z; Mussatto SI; Oliveira JM; Teixeira JA
    Food Chem; 2013 Jun; 138(2-3):1510-4. PubMed ID: 23411274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits.
    Okano K; Tanaka T; Ogino C; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):413-23. PubMed ID: 19826806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-fermentation of grape must by Issatchenkia orientalis and Saccharomyces cerevisiae reduces the malic acid content in wine.
    Kim DH; Hong YA; Park HD
    Biotechnol Lett; 2008 Sep; 30(9):1633-8. PubMed ID: 18414791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Saccharomyces cerevisiae-Oenococcus oeni interactions in wine: current knowledge and perspectives.
    Alexandre H; Costello PJ; Remize F; Guzzo J; Guilloux-Benatier M
    Int J Food Microbiol; 2004 Jun; 93(2):141-54. PubMed ID: 15135953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Recent developments in L-lactate fermentation by genetically modified microorganisms].
    Jiang X; Wang L; Zhang G; Yu B; Zeng Q
    Sheng Wu Gong Cheng Xue Bao; 2013 Oct; 29(10):1398-410. PubMed ID: 24432655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spoilage yeasts in the wine industry.
    Loureiro V; Malfeito-Ferreira M
    Int J Food Microbiol; 2003 Sep; 86(1-2):23-50. PubMed ID: 12892920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative metabolic footprinting of a large number of commercial wine yeast strains in Chardonnay fermentations.
    Richter CL; Dunn B; Sherlock G; Pugh T
    FEMS Yeast Res; 2013 Jun; 13(4):394-410. PubMed ID: 23528123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.