BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 24430221)

  • 1. Ethylene production by cress roots and excised cress root segments and its inhibition by 3,5-diiodo-4-hydroxybenzoic acid.
    Robert ML; Taylor HF; Wain RL
    Planta; 1975 Jan; 126(3):273-84. PubMed ID: 24430221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of 3,5-diiodo-4-hydroxybenzoic acid on the oxidation of IAA and auxin-induced ethylene production by cress root segments.
    Robert ML; Taylor HF; Wain RL
    Planta; 1976 Jan; 129(1):53-7. PubMed ID: 24430815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Promotion of cress root elongation in white light by 3,5-diiodo-4-hydroxybenzoic acid.
    Larqué-Saavedra A; Wilkins H; Wain RL
    Planta; 1975 Jan; 126(3):269-72. PubMed ID: 24430220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of certain phenolic acids on the growth and ethylene production of cress seedling roots.
    Robert ML; Taylor HF; Wain RL
    Planta; 1976 Jan; 132(1):95-6. PubMed ID: 24424911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigations into the possible regulation of negative gravitropic curvature in intact Avena sativa plants and in isolated stem segments by ethylene and gibberellins.
    Kaufman P; Pharis RP; Reid DM; Beall FD
    Physiol Plant; 1985; 65():237-44. PubMed ID: 11540850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory action of auxin on root elongation not mediated by ethylene.
    Eliasson L; Bertell G; Bolander E
    Plant Physiol; 1989 Sep; 91(1):310-4. PubMed ID: 16667017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allelochemical root-growth inhibitors in low-molecular-weight cress-seed exudate.
    Khan MI; Begum RA; Franková L; Fry SC
    Ann Bot; 2024 Apr; 133(3):447-458. PubMed ID: 38141653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pectic disaccharides lepidimoic acid and β-d-xylopyranosyl-(1→3)-d-galacturonic acid occur in cress-seed exudate but lack allelochemical activity.
    Iqbal A; Miller JG; Murray L; Sadler IH; Fry SC
    Ann Bot; 2016 Apr; 117(4):607-23. PubMed ID: 26957370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for allelopathy by tree-of-heaven (Ailanthus altissima).
    Heisey RM
    J Chem Ecol; 1990 Jun; 16(6):2039-55. PubMed ID: 24264005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rice seedlings release momilactone B into the environment.
    Kato-Noguchi H; Ino T
    Phytochemistry; 2003 Jul; 63(5):551-4. PubMed ID: 12809715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and identification of a potent allelopathic substance in rice root exudates.
    Kato-Noguchi H; Ino T; Sata N; Yamamura S
    Physiol Plant; 2002 Jul; 115(3):401-405. PubMed ID: 12081533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium ion dependency of ethylene production in segments of primary roots of Zea mays.
    Hasenstein KH; Evans ML
    Physiol Plant; 1986; 67():570-5. PubMed ID: 11538216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allelopathy of oats. II. Allelochemical effect ofL-Tryptophan and its concentration in oat root exudates.
    Kato-Noguchi H; Mizutani J; Hasegawa K
    J Chem Ecol; 1994 Feb; 20(2):315-9. PubMed ID: 24242057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potassium, not lepidimoide, is the principal 'allelochemical' of cress-seed exudate that promotes amaranth hypocotyl elongation.
    Fry SC
    Ann Bot; 2017 Oct; 120(4):511-520. PubMed ID: 28981578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elimination of Geotropic Responsiveness in Roots of Cress (Lepidium sativum) by Removal of Statolith Starch.
    Iversen TH
    Physiol Plant; 1969; 22(6):1251-62. PubMed ID: 20925675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Allelopathy of the moss Rhynchostegium pallidifolium and 3-hydroxy-β-ionone.
    Kato-Noguchi H; Seki T
    Plant Signal Behav; 2010 Jun; 5(6):702-4. PubMed ID: 20400848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethylene as a Possible Mediator of Light- and Nitrate-Induced Inhibition of Nodulation of Pisum sativum L. cv Sparkle.
    Lee KH; Larue TA
    Plant Physiol; 1992 Nov; 100(3):1334-8. PubMed ID: 16653125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auxin and the response of pea roots to auxin transport inhibitors: morphactin.
    Gaither DH
    Plant Physiol; 1975 Jun; 55(6):1082-6. PubMed ID: 16659215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does ethylene mediate root growth inhibition by indole-3-acetic Acid?
    Andreae WA; Venis MA; Jursic F; Dumas T
    Plant Physiol; 1968 Sep; 43(9):1375-9. PubMed ID: 16656923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation of ethylene production and gas-space (aerenchyma) formation in adventitious roots of Zea mays L. by small partial pressures of oxygen.
    Jackson MB; Fenning TM; Drew MC; Saker LR
    Planta; 1985 Sep; 165(4):486-92. PubMed ID: 24241221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.