These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 24430469)

  • 1. The induction of transport channels by auxin.
    Sachs T
    Planta; 1975 Jan; 127(3):201-6. PubMed ID: 24430469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seasonal variations in the polar-transport pathways and retention sites of [(3)H]indole-3-acetic acid in young branches ofFagus sylvatica L.
    Lachaud S; Bonnemain JL
    Planta; 1984 May; 161(3):207-15. PubMed ID: 24253645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abscission: movement and conjugation of auxin.
    Craker LE; Chadwick AV; Leather GR
    Plant Physiol; 1970 Dec; 46(6):790-3. PubMed ID: 16657548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auxin-responsive DR5 promoter coupled with transport assays suggest separate but linked routes of auxin transport during woody stem development in Populus.
    Spicer R; Tisdale-Orr T; Talavera C
    PLoS One; 2013; 8(8):e72499. PubMed ID: 23977308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effects of boron on indole-3-acetic acid transportation in intact phaseolus aureus plant].
    Jiao XY; Yang ZP; Zhao RF; Wang LZ
    Ying Yong Sheng Tai Xue Bao; 2007 Feb; 18(2):366-70. PubMed ID: 17450741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term inhibition by auxin of leaf blade expansion in bean and Arabidopsis.
    Keller CP; Stahlberg R; Barkawi LS; Cohen JD
    Plant Physiol; 2004 Mar; 134(3):1217-26. PubMed ID: 14988474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abscission: support for a role of ethylene modification of auxin transport.
    Beyer EM
    Plant Physiol; 1973 Jul; 52(1):1-5. PubMed ID: 16658489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An assessment of auxin-promoted transport in decapitated stems and whole shoots of Phaseolus vulgaris L.
    Patrick JW
    Planta; 1979 Jan; 146(1):107-12. PubMed ID: 24317953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auxin transport: a new synthetic inhibitor.
    Beyer EM
    Plant Physiol; 1972 Sep; 50(3):322-7. PubMed ID: 16658167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Location of transported auxin in etiolated maize shoots using 5-azidoindole-3-acetic Acid.
    Jones AM
    Plant Physiol; 1990 Jul; 93(3):1154-61. PubMed ID: 16667572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photosynthate transport in stems of Phaseolus vulgaris L. treated with gibberellic acid, indole-3-acetic acid or kinetin. : Effects at the site of hormone application.
    Hayes PM; Patrick JW
    Planta; 1985 Nov; 166(3):371-9. PubMed ID: 24241520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A gene encoding a germin-like protein, identified by a cDNA-AFLP approach, is specifically expressed during germination of Phaseolus vulgaris.
    Aubry C; Morère-Le Paven MC; Chateigner-Boutin AL; Teulat-Merah B; Ricoult C; Peltier D; Jalouzot R; Limami AM
    Planta; 2003 Jul; 217(3):466-75. PubMed ID: 14520574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detailed quantitative analysis of architectural traits of basal roots of young seedlings of bean in response to auxin and ethylene.
    Basu P; Brown KM; Pal A
    Plant Physiol; 2011 Apr; 155(4):2056-65. PubMed ID: 21311033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigations on the Mechanism of the Brassinosteroid Response: I. Indole-3-acetic Acid Metabolism and Transport.
    Cohen JD; Meudt WJ
    Plant Physiol; 1983 Jul; 72(3):691-4. PubMed ID: 16663068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracting relevant physiological information from polar auxin transport data in Panax ginseng.
    Boot KJM; Hille SC; Korthout HAAJ; Libbenga KR; van Duijn B
    J Plant Physiol; 2021 Jul; 262():153436. PubMed ID: 34029983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Comparative Study of Carrier Participation in the Transport of 2,3,5-triiodobenzoic acid, indole-3-acetic acid, and 2,4-dichlorophenoxyacetic acid by Cucurbita pepo L. Hypocotyl Segments.
    Depta H; Rubery PH
    J Plant Physiol; 1984 Aug; 115(5):371-87. PubMed ID: 23194793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of Oryza sativa OsCONTINUOUS VASCULAR RING-LIKE 1 (OsCOLE1) and OsCOLE1-INTERACTING PROTEIN reveal a novel intracellular auxin transport mechanism.
    Liu F; Zhang L; Luo Y; Xu M; Fan Y; Wang L
    New Phytol; 2016 Oct; 212(1):96-107. PubMed ID: 27265035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of polar auxin transport in grapevine fruitlets (Vitis vinifera L.) and the proposed role of auxin homeostasis during fruit abscission.
    Kühn N; Serrano A; Abello C; Arce A; Espinoza C; Gouthu S; Deluc L; Arce-Johnson P
    BMC Plant Biol; 2016 Oct; 16(1):234. PubMed ID: 27793088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaf expansion in
    Keller CP
    Physiol Plant; 2017 Aug; 130(4):580-589. PubMed ID: 29200506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transfusion tracheids in the conifer leaves of Thuja plicata (Cupressaceae) are derived from parenchyma and their differentiation is induced by auxin.
    Aloni R; Foster A; Mattsson J
    Am J Bot; 2013 Oct; 100(10):1949-56. PubMed ID: 24070861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.