These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A new approach to the dosimetry of mixed radiation using a recombination chamber. Zielczyński M Radiat Prot Dosimetry; 2004; 110(1-4):267-71. PubMed ID: 15353657 [TBL] [Abstract][Full Text] [Related]
3. Recombination chambers filled with different gases--studies of possible application for BNCT beam dosimetry. Tulik P; Golnik N; Zielczynski M Radiat Prot Dosimetry; 2004; 110(1-4):669-73. PubMed ID: 15353728 [TBL] [Abstract][Full Text] [Related]
4. An indirect in vivo dosimetry system for ocular proton therapy. Carnicer A; Letellier V; Rucka G; Angellier G; Sauerwein W; Hérault J Radiat Prot Dosimetry; 2014 Oct; 161(1-4):373-6. PubMed ID: 24222711 [TBL] [Abstract][Full Text] [Related]
5. Characterization of the secondary neutron field produced during treatment of an anthropomorphic phantom with x-rays, protons and carbon ions. Tessa CL; Berger T; Kaderka R; Schardt D; Burmeister S; Labrenz J; Reitz G; Durante M Phys Med Biol; 2014 Apr; 59(8):2111-25. PubMed ID: 24694920 [TBL] [Abstract][Full Text] [Related]
6. A measuring system with a recombination chamber for neutron dosimetry around medical accelerators. Golnik N; Kamiński P; Zielczyński M Radiat Prot Dosimetry; 2004; 110(1-4):273-6. PubMed ID: 15353658 [TBL] [Abstract][Full Text] [Related]
7. COMPARISON OF RESPONSE OF PASSIVE DOSIMETRY SYSTEMS IN SCANNING PROTON RADIOTHERAPY-A STUDY USING PAEDIATRIC ANTHROPOMORPHIC PHANTOMS. Kneževic Ž; Ambrozova I; Domingo C; De Saint-Hubert M; Majer M; Martínez-Rovira I; Miljanic S; Mojzeszek N; Porwol P; Ploc O; Romero-Expósito M; Stolarczyk L; Trinkl S; Harrison RM; Olko P Radiat Prot Dosimetry; 2018 Aug; 180(1-4):256-260. PubMed ID: 29165619 [TBL] [Abstract][Full Text] [Related]
8. Simulation of organ-specific patient effective dose due to secondary neutrons in proton radiation treatment. Jiang H; Wang B; Xu XG; Suit HD; Paganetti H Phys Med Biol; 2005 Sep; 50(18):4337-53. PubMed ID: 16148397 [TBL] [Abstract][Full Text] [Related]
9. CALCULATION OF LET DISTRIBUTIONS IN THE ACTIVE VOLUME OF A RECOMBINATION CHAMBER. Maciak M Radiat Prot Dosimetry; 2018 Aug; 180(1-4):407-412. PubMed ID: 30085316 [TBL] [Abstract][Full Text] [Related]
10. Reference dosimetry in a scanned pulsed proton beam using ionisation chambers and a Faraday cup. Lorin S; Grusell E; Tilly N; Medin J; Kimstrand P; Glimelius B Phys Med Biol; 2008 Jul; 53(13):3519-29. PubMed ID: 18552418 [TBL] [Abstract][Full Text] [Related]
11. Ion chamber gas-to-wall conversion factors for fast neutron dosimetry. Miranda JG; DeLuca PM; Chadwick MB Radiat Prot Dosimetry; 2004; 110(1-4):15-25. PubMed ID: 15353616 [TBL] [Abstract][Full Text] [Related]
12. Absorbed dose in ion beams: comparison of ionisation- and fluence-based measurements. Osinga JM; Brons S; Bartz JA; Akselrod MS; Jäkel O; Greilich S Radiat Prot Dosimetry; 2014 Oct; 161(1-4):387-92. PubMed ID: 24497551 [TBL] [Abstract][Full Text] [Related]
13. Measurement of neutron ambient dose equivalent in carbon-ion radiotherapy with an active scanned delivery system. Yonai S; Furukawa T; Inaniwa T Radiat Prot Dosimetry; 2014 Oct; 161(1-4):433-6. PubMed ID: 24126486 [TBL] [Abstract][Full Text] [Related]
14. Absorbed dose to water determination with ionization chamber dosimetry and calorimetry in restricted neutron, photon, proton and heavy-ion radiation fields. Brede HJ; Greif KD; Hecker O; Heeg P; Heese J; Jones DT; Kluge H; Schardt D Phys Med Biol; 2006 Aug; 51(15):3667-82. PubMed ID: 16861773 [TBL] [Abstract][Full Text] [Related]
15. Development of a µ-TPC detector as a standard instrument for low-energy neutron field characterisation. Maire D; Billard J; Bosson G; Bourrion O; Guillaudin O; Lamblin J; Lebreton L; Mayet F; Médard J; Muraz JF; Richer JP; Riffard Q; Santos D Radiat Prot Dosimetry; 2014 Oct; 161(1-4):245-8. PubMed ID: 24594906 [TBL] [Abstract][Full Text] [Related]
16. Development of a new ionisation chamber, for HP(10) measurement, using Monte-Carlo simulation and experimental methods. Silva H; Cardoso J; Oliveira C Radiat Prot Dosimetry; 2011 Mar; 144(1-4):168-72. PubMed ID: 21208934 [TBL] [Abstract][Full Text] [Related]
17. Phantom dosimeters examined by NMR analysis: a promising technique for 3-D determinations of absorbed dose. Gambarini G; Monti D; Fumagalli ML; Birattari C; Salvadori P Appl Radiat Isot; 1997; 48(10-12):1477-84. PubMed ID: 9463873 [TBL] [Abstract][Full Text] [Related]
18. Californium-252 dosimetry in phantoms of various dimensions. Sabau MN; Lanzi LH; Rozenfeld M Radiology; 1980 Dec; 137(3):789-93. PubMed ID: 7444063 [TBL] [Abstract][Full Text] [Related]
19. Out-of-field dose measurements in a water phantom using different radiotherapy modalities. Kaderka R; Schardt D; Durante M; Berger T; Ramm U; Licher J; La Tessa C Phys Med Biol; 2012 Aug; 57(16):5059-74. PubMed ID: 22836598 [TBL] [Abstract][Full Text] [Related]
20. Computational study of room scattering influence in the THOR BNCT treatment room. Hsiao MC; Liu YH; Jiang SH Appl Radiat Isot; 2014 Jun; 88():162-6. PubMed ID: 24365466 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]