These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 24431205)

  • 21. Aldosterone blunts tubuloglomerular feedback by activating macula densa mineralocorticoid receptors.
    Fu Y; Hall JE; Lu D; Lin L; Manning RD; Cheng L; Gomez-Sanchez CE; Juncos LA; Liu R
    Hypertension; 2012 Mar; 59(3):599-606. PubMed ID: 22311906
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The vulnerability of the thin descending limbs of Henle's loop in the isolated perfused rat kidney.
    Kopolovic J; Brezis M; Spokes K; Silva P; Epstein F; Rosen S
    Am J Kidney Dis; 1989 Jul; 14(1):25-30. PubMed ID: 2741933
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced superoxide production in renal outer medulla of Dahl salt-sensitive rats reduces nitric oxide tubular-vascular cross-talk.
    Mori T; O'Connor PM; Abe M; Cowley AW
    Hypertension; 2007 Jun; 49(6):1336-41. PubMed ID: 17470722
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Macula Densa Nitric Oxide Synthase 1β Protects against Salt-Sensitive Hypertension.
    Lu Y; Wei J; Stec DE; Roman RJ; Ge Y; Cheng L; Liu EY; Zhang J; Hansen PB; Fan F; Juncos LA; Wang L; Pollock J; Huang PL; Fu Y; Wang S; Liu R
    J Am Soc Nephrol; 2016 Aug; 27(8):2346-56. PubMed ID: 26647426
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrastructural localization of Na-K-2Cl cotransporter in thick ascending limb and macula densa of rat kidney.
    Nielsen S; Maunsbach AB; Ecelbarger CA; Knepper MA
    Am J Physiol; 1998 Dec; 275(6):F885-93. PubMed ID: 9843905
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction between nitric oxide and superoxide in the macula densa in aldosterone-induced alterations of tubuloglomerular feedback.
    Zhang Q; Lin L; Lu Y; Liu H; Duan Y; Zhu X; Zou C; Manning RD; Liu R
    Am J Physiol Renal Physiol; 2013 Feb; 304(3):F326-32. PubMed ID: 23220724
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unraveling the relationship between macula densa cell volume and luminal solute concentration/osmolality.
    Komlosi P; Fintha A; Bell PD
    Kidney Int; 2006 Sep; 70(5):865-71. PubMed ID: 16820788
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct demonstration of tubular fluid flow sensing by macula densa cells.
    Sipos A; Vargas S; Peti-Peterdi J
    Am J Physiol Renal Physiol; 2010 Nov; 299(5):F1087-93. PubMed ID: 20719981
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Early diabetes as a model for testing the regulation of juxtaglomerular NOS I.
    Thomson SC; Deng A; Komine N; Hammes JS; Blantz RC; Gabbai FB
    Am J Physiol Renal Physiol; 2004 Oct; 287(4):F732-8. PubMed ID: 15213066
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Testosterone enhances tubuloglomerular feedback by increasing superoxide production in the macula densa.
    Fu Y; Lu Y; Liu EY; Zhu X; Mahajan GJ; Lu D; Roman RJ; Liu R
    Am J Physiol Regul Integr Comp Physiol; 2013 May; 304(9):R726-33. PubMed ID: 23467324
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Possible mechanism of efferent arteriole (Ef-Art) tubuloglomerular feedback.
    Ren Y; Garvin JL; Liu R; Carretero OA
    Kidney Int; 2007 May; 71(9):861-6. PubMed ID: 17342182
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transport activity modifies thick ascending limb damage in the isolated perfused kidney.
    Brezis M; Rosen S; Silva P; Epstein FH
    Kidney Int; 1984 Jan; 25(1):65-72. PubMed ID: 6727130
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oscillating cortical thick ascending limb cells at the juxtaglomerular apparatus.
    Komlosi P; Banizs B; Fintha A; Steele S; Zhang ZR; Bell PD
    J Am Soc Nephrol; 2008 Oct; 19(10):1940-6. PubMed ID: 18562570
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nitric oxide and tubuloglomerular feedback.
    Welch WJ; Wilcox CS; Thomson SC
    Semin Nephrol; 1999 May; 19(3):251-62. PubMed ID: 10226331
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thromboxane A2 contributes to the enhanced tubuloglomerular feedback activity in young SHR.
    Brännström K; Arendshorst WJ
    Am J Physiol; 1999 May; 276(5):F758-66. PubMed ID: 10330058
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism by which superoxide potentiates tubuloglomerular feedback.
    Ren Y; Carretero OA; Garvin JL
    Hypertension; 2002 Feb; 39(2 Pt 2):624-8. PubMed ID: 11882620
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calcium and phosphate transport in isolated segments of rabbit Henle's loop.
    Rocha AS; Magaldi JB; Kokko JP
    J Clin Invest; 1977 May; 59(5):975-83. PubMed ID: 856875
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Iodinated contrast media cause endothelial damage leading to vasoconstriction of human and rat vasa recta.
    Sendeski MM; Persson AB; Liu ZZ; Busch JF; Weikert S; Persson PB; Hippenstiel S; Patzak A
    Am J Physiol Renal Physiol; 2012 Dec; 303(12):F1592-8. PubMed ID: 23077094
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potentiation of tubuloglomerular feedback in the rat by thromboxane mimetic. Role of macula densa.
    Welch WJ; Wilcox CS
    J Clin Invest; 1992 Jun; 89(6):1857-65. PubMed ID: 1601993
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nitric oxide modulates and adenosine mediates the tubuloglomerular feedback mechanism.
    Persson AE; Brown R; Liu R; Ollerstam A
    Acta Physiol Scand; 2002 Oct; 176(2):91-4. PubMed ID: 12354167
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.