BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

603 related articles for article (PubMed ID: 24431451)

  • 1. Precuneus is a functional core of the default-mode network.
    Utevsky AV; Smith DV; Huettel SA
    J Neurosci; 2014 Jan; 34(3):932-40. PubMed ID: 24431451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain connectivity during resting state and subsequent working memory task predicts behavioural performance.
    Sala-Llonch R; Peña-Gómez C; Arenaza-Urquijo EM; Vidal-Piñeiro D; Bargalló N; Junqué C; Bartrés-Faz D
    Cortex; 2012 Oct; 48(9):1187-96. PubMed ID: 21872853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time scale properties of task and resting-state functional connectivity: Detrended partial cross-correlation analysis.
    Ide JS; Li CR
    Neuroimage; 2018 Jun; 173():240-248. PubMed ID: 29454934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computational study of whole-brain connectivity in resting state and task fMRI.
    Goparaju B; Rana KD; Calabro FJ; Vaina LM
    Med Sci Monit; 2014 Jun; 20():1024-42. PubMed ID: 24947491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Higher interference susceptibility in reaction time task is accompanied by weakened functional dissociation between salience and default mode network.
    Götting FN; Borchardt V; Demenescu LR; Teckentrup V; Dinica K; Lord AR; Rohe T; Hausdörfer DI; Li M; Metzger CD; Walter M
    Neurosci Lett; 2017 May; 649():34-40. PubMed ID: 28347858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Risk seeking for losses modulates the functional connectivity of the default mode and left frontoparietal networks in young males.
    Deza Araujo YI; Nebe S; Neukam PT; Pooseh S; Sebold M; Garbusow M; Heinz A; Smolka MN
    Cogn Affect Behav Neurosci; 2018 Jun; 18(3):536-549. PubMed ID: 29616472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis.
    Greicius MD; Krasnow B; Reiss AL; Menon V
    Proc Natl Acad Sci U S A; 2003 Jan; 100(1):253-8. PubMed ID: 12506194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using spatial multiple regression to identify intrinsic connectivity networks involved in working memory performance.
    Gordon EM; Stollstorff M; Vaidya CJ
    Hum Brain Mapp; 2012 Jul; 33(7):1536-52. PubMed ID: 21761505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An independent components and functional connectivity analysis of resting state fMRI data points to neural network dysregulation in adult ADHD.
    Hoekzema E; Carmona S; Ramos-Quiroga JA; Richarte Fernández V; Bosch R; Soliva JC; Rovira M; Bulbena A; Tobeña A; Casas M; Vilarroya O
    Hum Brain Mapp; 2014 Apr; 35(4):1261-72. PubMed ID: 23417778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of effective connectivity in the default mode network at rest and during a memory task.
    Li X; Kehoe EG; McGinnity TM; Coyle D; Bokde AL
    Brain Connect; 2015 Feb; 5(1):60-7. PubMed ID: 25390185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anticipatory processes in brain state switching - evidence from a novel cued-switching task implicating default mode and salience networks.
    Sidlauskaite J; Wiersema JR; Roeyers H; Krebs RM; Vassena E; Fias W; Brass M; Achten E; Sonuga-Barke E
    Neuroimage; 2014 Sep; 98():359-65. PubMed ID: 24830839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional connectivity of default mode network components: correlation, anticorrelation, and causality.
    Uddin LQ; Kelly AM; Biswal BB; Castellanos FX; Milham MP
    Hum Brain Mapp; 2009 Feb; 30(2):625-37. PubMed ID: 18219617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cognitive and default-mode resting state networks: do male and female brains "rest" differently?
    Weissman-Fogel I; Moayedi M; Taylor KS; Pope G; Davis KD
    Hum Brain Mapp; 2010 Nov; 31(11):1713-26. PubMed ID: 20725910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fractionating the default mode network: distinct contributions of the ventral and dorsal posterior cingulate cortex to cognitive control.
    Leech R; Kamourieh S; Beckmann CF; Sharp DJ
    J Neurosci; 2011 Mar; 31(9):3217-24. PubMed ID: 21368033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of the impact of a confounding variable on functional connectivity confirms anti-correlated networks in the resting-state.
    Carbonell F; Bellec P; Shmuel A
    Neuroimage; 2014 Feb; 86():343-53. PubMed ID: 24128734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of task complexity and age-differences on task-related functional connectivity of attentional networks.
    O'Connell MA; Basak C
    Neuropsychologia; 2018 Jun; 114():50-64. PubMed ID: 29655800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconfiguration of Brain Network Architectures between Resting-State and Complexity-Dependent Cognitive Reasoning.
    Hearne LJ; Cocchi L; Zalesky A; Mattingley JB
    J Neurosci; 2017 Aug; 37(35):8399-8411. PubMed ID: 28760864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased sensitivity to age-related differences in brain functional connectivity during continuous multiple object tracking compared to resting-state.
    Dørum ES; Kaufmann T; Alnæs D; Andreassen OA; Richard G; Kolskår KK; Nordvik JE; Westlye LT
    Neuroimage; 2017 Mar; 148():364-372. PubMed ID: 28111190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial and temporal functional connectivity changes between resting and attentive states.
    Bray S; Arnold AE; Levy RM; Iaria G
    Hum Brain Mapp; 2015 Feb; 36(2):549-65. PubMed ID: 25271132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying the default mode network structure using dynamic causal modeling on resting-state functional magnetic resonance imaging.
    Di X; Biswal BB
    Neuroimage; 2014 Feb; 86():53-9. PubMed ID: 23927904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.