These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 2443174)

  • 1. Sodium-dependent taurocholate uptake by isolated rat hepatocytes occurs through an electrogenic mechanism.
    Bear CE; Davison JS; Shaffer EA
    Biochim Biophys Acta; 1987 Oct; 903(2):388-94. PubMed ID: 2443174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrogenicity of Na-coupled bile salt transport in isolated rat hepatocytes.
    Weinman SA; Weeks RP
    Am J Physiol; 1993 Jul; 265(1 Pt 1):G73-80. PubMed ID: 8338174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hepatic taurocholate uptake is electrogenic and influenced by transmembrane potential difference.
    Lidofsky SD; Fitz JG; Weisiger RA; Scharschmidt BF
    Am J Physiol; 1993 Mar; 264(3 Pt 1):G478-85. PubMed ID: 8460701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of glucagon on hepatic taurocholate uptake: relationship to membrane potential.
    Edmondson JW; Miller BA; Lumeng L
    Am J Physiol; 1985 Oct; 249(4 Pt 1):G427-33. PubMed ID: 4050993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of ATP-depleted cells in the analysis of taurocholate uptake by isolated rat hepatocytes.
    Yamazaki M; Sugiyama Y; Suzuki H; Iga T; Hanano M
    J Hepatol; 1992 Jan; 14(1):54-63. PubMed ID: 1737916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bile acid binding proteins in hepatocellular membranes of newborn and adult rats. Identification of transport proteins with azidobenzamidotauro[14C]cholate ([14C]ABATC).
    Ziegler K; Frimmer M; Müllner S; Fasold H
    Biochim Biophys Acta; 1989 Apr; 980(2):161-8. PubMed ID: 2930783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of transmembrane electrical potential gradient in rat hepatocytes in situ.
    Fitz JG; Scharschmidt BF
    Am J Physiol; 1987 Jan; 252(1 Pt 1):G56-64. PubMed ID: 3812689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium ion-coupled uptake of taurocholate by rat-liver plasma membrane vesicles.
    Ruifrok PG; Meijer DK
    Liver; 1982 Mar; 2(1):28-34. PubMed ID: 7176836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct determination of the driving forces for taurocholate uptake into rat liver plasma membrane vesicles.
    Duffy MC; Blitzer BL; Boyer JL
    J Clin Invest; 1983 Oct; 72(4):1470-81. PubMed ID: 6630516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of chlorpromazine on Na+-K+-ATPase pumping and solute transport in rat hepatocytes.
    Van Dyke RW; Scharschmidt BF
    Am J Physiol; 1987 Nov; 253(5 Pt 1):G613-21. PubMed ID: 2446505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino acid inhibition of bile acid uptake by isolated rat hepatocytes: relationship to dissipation of transmembrane Na+ gradient.
    Blitzer BL; Ratoosh SL; Donovan CB
    Am J Physiol; 1983 Sep; 245(3):G399-403. PubMed ID: 6614184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Taurocholate transport by rat liver canalicular membrane vesicles. Evidence for the presence of an Na+-independent transport system.
    Inoue M; Kinne R; Tran T; Arias IM
    J Clin Invest; 1984 Mar; 73(3):659-63. PubMed ID: 6707198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino acids are potent inhibitors of bile acid uptake by liver plasma membrane vesicles isolated from suckling rats.
    Bucuvalas JC; Goodrich AL; Blitzer BL; Suchy FJ
    Pediatr Res; 1985 Dec; 19(12):1298-304. PubMed ID: 4080448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specificity of an Na+ -dependent taurocholate transport site in isolated rat hepatocytes.
    Hardison WG; Bellentani S; Heasley V; Shellhamer D
    Am J Physiol; 1984 May; 246(5 Pt 1):G477-83. PubMed ID: 6720949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ionic requirements for taurocholate transport in rat liver plasma membrane vesicles.
    Simion FA; Fleischer B; Fleischer S
    J Bioenerg Biomembr; 1984 Dec; 16(5-6):507-15. PubMed ID: 6537434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic and energetic aspects of the inhibition of taurocholate uptake by Na+-dependent amino acids: studies in rat liver plasma membrane vesicles.
    Blitzer BL; Bueler RL
    Am J Physiol; 1985 Jul; 249(1 Pt 1):G120-4. PubMed ID: 4014461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium ion-coupled uptake of taurocholate by intestinal brush-border membrane vesicles.
    Beesley RC; Faust RG
    Biochem J; 1979 Feb; 178(2):299-303. PubMed ID: 444217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Na on bile acid uptake by isolated rat hepatocytes. Evidence for a heterogeneous system.
    Anwer MS; Hegner D
    Hoppe Seylers Z Physiol Chem; 1978 Feb; 359(2):181-92. PubMed ID: 649053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation between the inhibitory effects of basic drugs on the uptake of cardiac glycosides and taurocholate by isolated rat hepatocytes.
    Okudaira K; Yamazaki M; Sawada Y; Sugiyama Y; Iga T; Hanano M
    Pharm Res; 1992 Sep; 9(9):1152-6. PubMed ID: 1409396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Taurocholate transport by basolateral plasma membrane vesicles isolated from human liver.
    Novak DA; Ryckman FC; Suchy FJ
    Hepatology; 1989 Oct; 10(4):447-53. PubMed ID: 2777205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.