These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 24431978)

  • 1. Breathing 100% O2 has no Effect on Blood Lactate Concentration During a Short Passive Recovery from Exhaustive Exercise.
    Kay B; Walker H; Barnao D; Graham I; Stannard S; Morton RH
    J Sports Sci Med; 2005 Jun; 4(2):208-10. PubMed ID: 24431978
    [No Abstract]   [Full Text] [Related]  

  • 2. Blood lactate disappearance during breathing hyperoxic gas after exercise in two different physical fitness groups--on the workload fixed at 130% AT.
    Maeda T; Yasukouchi A
    Appl Human Sci; 1998 Mar; 17(2):33-40. PubMed ID: 9611365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle lactate metabolism in recovery from intense exhaustive exercise: impact of light exercise.
    Bangsbo J; Graham T; Johansen L; Saltin B
    J Appl Physiol (1985); 1994 Oct; 77(4):1890-5. PubMed ID: 7836214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of low-intensity isocapnic hyperpnoea on blood lactate disappearance after exhaustive arm exercise.
    Perret C; Mueller G
    Br J Sports Med; 2007 Sep; 41(9):588-91; discussion 591. PubMed ID: 17502332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of various recovery modalities on subsequent performance, in consecutive supramaximal exercise.
    Thiriet P; Gozal D; Wouassi D; Oumarou T; Gelas H; Lacour JR
    J Sports Med Phys Fitness; 1993 Jun; 33(2):118-29. PubMed ID: 8412047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of active versus passive recovery on power output during repeated bouts of short term, high intensity exercise.
    Connolly DA; Brennan KM; Lauzon CD
    J Sports Sci Med; 2003 Jun; 2(2):47-51. PubMed ID: 24616610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diaphragmatic energetics during prolonged exhaustive exercise.
    Manohar M; Hassan AS
    Am Rev Respir Dis; 1991 Aug; 144(2):415-8. PubMed ID: 1859069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Light Pedaling Added to Contrast Water Immersion for Recovery after Exhaustive Exercise.
    Deley G; Cometti C; Paizis C; Babault N
    Int J Environ Res Public Health; 2021 Dec; 18(24):. PubMed ID: 34948678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative study of lactate removal in short term massage of extremities, active recovery and a passive recovery period after supramaximal exercise sessions.
    Gupta S; Goswami A; Sadhukhan AK; Mathur DN
    Int J Sports Med; 1996 Feb; 17(2):106-10. PubMed ID: 8833711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exercise and recovery metabolism in the Pacific spiny dogfish (Squalus acanthias).
    Richards JG; Heigenhauser GJ; Wood CM
    J Comp Physiol B; 2003 Aug; 173(6):463-74. PubMed ID: 12851779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of inspired O2 concentration on leg lactate release during incremental exercise.
    Knight DR; Poole DC; Hogan MC; Bebout DE; Wagner PD
    J Appl Physiol (1985); 1996 Jul; 81(1):246-51. PubMed ID: 8828671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of water-based recovery on blood lactate removal after high-intensity exercise.
    Lucertini F; Gervasi M; D'Amen G; Sisti D; Rocchi MBL; Stocchi V; Benelli P
    PLoS One; 2017; 12(9):e0184240. PubMed ID: 28877225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Different Recoveries During HIIT Sessions on Metabolic and Cardiorespiratory Responses and Sprint Performance in Healthy Men.
    Germano MD; Sindorf MAG; Crisp AH; Braz TV; Brigatto FA; Nunes AG; Verlengia R; Moreno MA; Aoki MS; Lopes CR
    J Strength Cond Res; 2022 Jan; 36(1):121-129. PubMed ID: 31895286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time course of anaerobic and aerobic energy expenditure during short-term exhaustive running in athletes.
    Nummela A; Rusko H
    Int J Sports Med; 1995 Nov; 16(8):522-7. PubMed ID: 8776206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery from maximal effort exercise: lactate disappearance and subsequent performance.
    Weltman A; Stamford BA; Fulco C
    J Appl Physiol Respir Environ Exerc Physiol; 1979 Oct; 47(4):677-82. PubMed ID: 511673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Active Recovery on Lactate Concentration, Heart Rate and RPE in Climbing.
    Draper N; Bird EL; Coleman I; Hodgson C
    J Sports Sci Med; 2006; 5(1):97-105. PubMed ID: 24198686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prior exhaustive exercise and subsequent, maximal constant load exercise performance.
    Weltman A; Regan JD
    Int J Sports Med; 1983 Aug; 4(3):184-9. PubMed ID: 6629601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short term effects of various water immersions on recovery from exhaustive intermittent exercise.
    Pournot H; Bieuzen F; Duffield R; Lepretre PM; Cozzolino C; Hausswirth C
    Eur J Appl Physiol; 2011 Jul; 111(7):1287-95. PubMed ID: 21132438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic energy production and O2 deficit-debt relationship during exhaustive exercise in humans.
    Bangsbo J; Gollnick PD; Graham TE; Juel C; Kiens B; Mizuno M; Saltin B
    J Physiol; 1990 Mar; 422():539-59. PubMed ID: 2352192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of hypercapnia on changes in blood pH, plasma lactate and ammonia due to exercise.
    Kato T; Tsukanaka A; Harada T; Kosaka M; Matsui N
    Eur J Appl Physiol; 2005 Dec; 95(5-6):400-8. PubMed ID: 16193339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.