These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 24432312)

  • 1. Characterization of a possible uptake mechanism of selective antibacterial peptides.
    Polanco C; Samaniego JL; Castañón-González JA; Buhse T; Sordo ML
    Acta Biochim Pol; 2013; 60(4):629-33. PubMed ID: 24432312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of selective antibacterial peptides by the Polarity Profile method.
    Polanco C; Buhse T; Samaniego JL; Castañón-González JA
    Acta Biochim Pol; 2013; 60(2):183-9. PubMed ID: 23741718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding and crossing: Methods for the characterization of membrane-active peptides interactions with membranes at the molecular level.
    Sachon E; Walrant A; Sagan S; Cribier S; Rodriguez N
    Arch Biochem Biophys; 2021 Mar; 699():108751. PubMed ID: 33421380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of tryptophan content and backbone spacing on the uptake efficiency of cell-penetrating peptides.
    Rydberg HA; Matson M; Amand HL; Esbjörner EK; Nordén B
    Biochemistry; 2012 Jul; 51(27):5531-9. PubMed ID: 22712882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane Active Peptides and Their Biophysical Characterization.
    Avci FG; Akbulut BS; Ozkirimli E
    Biomolecules; 2018 Aug; 8(3):. PubMed ID: 30135402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cationic membrane peptides: atomic-level insight of structure-activity relationships from solid-state NMR.
    Su Y; Li S; Hong M
    Amino Acids; 2013 Mar; 44(3):821-33. PubMed ID: 23108593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo generation of short antimicrobial peptides with enhanced stability and cell specificity.
    Kim H; Jang JH; Kim SC; Cho JH
    J Antimicrob Chemother; 2014 Jan; 69(1):121-32. PubMed ID: 23946320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The thin line between cell-penetrating and antimicrobial peptides: the case of Pep-1 and Pep-1-K.
    Bobone S; Piazzon A; Orioni B; Pedersen JZ; Nan YH; Hahm KS; Shin SY; Stella L
    J Pept Sci; 2011 May; 17(5):335-41. PubMed ID: 21294230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using Confocal Microscopy and Computational Modeling to Investigate the Cell-Penetrating Properties of Antimicrobial Peptides.
    Del Rio G; Klipp E; Herrmann A
    Methods Mol Biol; 2017; 1548():191-199. PubMed ID: 28013505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-penetrating antimicrobial peptides - prospectives for targeting intracellular infections.
    Bahnsen JS; Franzyk H; Sayers EJ; Jones AT; Nielsen HM
    Pharm Res; 2015 May; 32(5):1546-56. PubMed ID: 25777610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of Structure and Micellar Interactions of Small Antimicrobial Peptides by Solution-State NMR.
    Wimmer R; Uggerhøj LE
    Methods Mol Biol; 2017; 1548():73-88. PubMed ID: 28013498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preferential uptake of L- versus D-amino acid cell-penetrating peptides in a cell type-dependent manner.
    Verdurmen WP; Bovee-Geurts PH; Wadhwani P; Ulrich AS; Hällbrink M; van Kuppevelt TH; Brock R
    Chem Biol; 2011 Aug; 18(8):1000-10. PubMed ID: 21867915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane-active peptides: binding, translocation, and flux in lipid vesicles.
    Almeida PF
    Biochim Biophys Acta; 2014 Sep; 1838(9):2216-27. PubMed ID: 24769436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of short membrane selective antimicrobial peptides containing tryptophan and arginine residues for improved activity, salt-resistance, and biocompatibility.
    Saravanan R; Li X; Lim K; Mohanram H; Peng L; Mishra B; Basu A; Lee JM; Bhattacharjya S; Leong SS
    Biotechnol Bioeng; 2014 Jan; 111(1):37-49. PubMed ID: 23860860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane interaction and antibacterial properties of chensinin-1, an antimicrobial peptide with atypical structural features from the skin of Rana chensinensis.
    Shang D; Sun Y; Wang C; Wei S; Ma L; Sun L
    Appl Microbiol Biotechnol; 2012 Dec; 96(6):1551-60. PubMed ID: 22581068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can we predict biological activity of antimicrobial peptides from their interactions with model phospholipid membranes?
    Papo N; Shai Y
    Peptides; 2003 Nov; 24(11):1693-703. PubMed ID: 15019200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The antimicrobial activity of Sub3 is dependent on membrane binding and cell-penetrating ability.
    Torcato IM; Huang YH; Franquelim HG; Gaspar DD; Craik DJ; Castanho MA; Henriques ST
    Chembiochem; 2013 Oct; 14(15):2013-22. PubMed ID: 24038773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane Interacting Peptides: A Review.
    Herrera AI; Tomich JM; Prakash O
    Curr Protein Pept Sci; 2016; 17(8):827-841. PubMed ID: 27226195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Purification and characterization of weak-acid antibacterial peptide MD7095 from Musca domestica larvae].
    Lu J; Wang JH; Zhong Y; Zhao YY; Chen ZW
    Wei Sheng Wu Xue Bao; 2006 Jun; 46(3):406-11. PubMed ID: 16933610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular partners for interaction and cell internalization of cell-penetrating peptides: how identical are they?
    Walrant A; Bechara C; Alves ID; Sagan S
    Nanomedicine (Lond); 2012 Jan; 7(1):133-43. PubMed ID: 22191782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.