These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 24432790)
21. Evaluating the performance of MM/PBSA for binding affinity prediction using class A GPCR crystal structures. Yau MQ; Emtage AL; Chan NJY; Doughty SW; Loo JSE J Comput Aided Mol Des; 2019 May; 33(5):487-496. PubMed ID: 30989574 [TBL] [Abstract][Full Text] [Related]
22. Assessing the Performance of Screening MM/PBSA in Protein-Ligand Interactions. Zhu YX; Sheng YJ; Ma YQ; Ding HM J Phys Chem B; 2022 Mar; 126(8):1700-1708. PubMed ID: 35188781 [TBL] [Abstract][Full Text] [Related]
23. Oxoanion binding by guanidiniocarbonylpyrrole cations in water: a combined DFT and MD investigation. Moiani D; Cavallotti C; Famulari A; Schmuck C Chemistry; 2008; 14(17):5207-19. PubMed ID: 18431730 [TBL] [Abstract][Full Text] [Related]
24. Molecular dynamics simulation, free energy calculation and structure-based 3D-QSAR studies of B-RAF kinase inhibitors. Yang Y; Qin J; Liu H; Yao X J Chem Inf Model; 2011 Mar; 51(3):680-92. PubMed ID: 21338122 [TBL] [Abstract][Full Text] [Related]
25. Improved ligand binding energies derived from molecular dynamics: replicate sampling enhances the search of conformational space. Adler M; Beroza P J Chem Inf Model; 2013 Aug; 53(8):2065-72. PubMed ID: 23845109 [TBL] [Abstract][Full Text] [Related]
26. High-throughput calculation of protein-ligand binding affinities: modification and adaptation of the MM-PBSA protocol to enterprise grid computing. Brown SP; Muchmore SW J Chem Inf Model; 2006; 46(3):999-1005. PubMed ID: 16711718 [TBL] [Abstract][Full Text] [Related]
27. Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Sun H; Li Y; Tian S; Xu L; Hou T Phys Chem Chem Phys; 2014 Aug; 16(31):16719-29. PubMed ID: 24999761 [TBL] [Abstract][Full Text] [Related]
28. Mutation-induced loop opening and energetics for binding of tamiflu to influenza N8 neuraminidase. Kar P; Knecht V J Phys Chem B; 2012 May; 116(21):6137-49. PubMed ID: 22553951 [TBL] [Abstract][Full Text] [Related]
29. Binding free energies and free energy components from molecular dynamics and Poisson-Boltzmann calculations. Application to amino acid recognition by aspartyl-tRNA synthetase. Archontis G; Simonson T; Karplus M J Mol Biol; 2001 Feb; 306(2):307-27. PubMed ID: 11237602 [TBL] [Abstract][Full Text] [Related]
30. Evaluation of interactions between urokinase plasminogen and inhibitors using molecular dynamic simulation and free-energy calculation. Sa R; Fang L; Huang M; Li Q; Wei Y; Wu K J Phys Chem A; 2014 Oct; 118(39):9113-9. PubMed ID: 24984238 [TBL] [Abstract][Full Text] [Related]
31. Efficient Approximation of Ligand Rotational and Translational Entropy Changes upon Binding for Use in MM-PBSA Calculations. Ben-Shalom IY; Pfeiffer-Marek S; Baringhaus KH; Gohlke H J Chem Inf Model; 2017 Feb; 57(2):170-189. PubMed ID: 27996253 [TBL] [Abstract][Full Text] [Related]
32. Contributions of water transfer energy to protein-ligand association and dissociation barriers: Watermap analysis of a series of p38α MAP kinase inhibitors. Pearlstein RA; Sherman W; Abel R Proteins; 2013 Sep; 81(9):1509-26. PubMed ID: 23468227 [TBL] [Abstract][Full Text] [Related]
33. Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. Wang J; Morin P; Wang W; Kollman PA J Am Chem Soc; 2001 Jun; 123(22):5221-30. PubMed ID: 11457384 [TBL] [Abstract][Full Text] [Related]
34. Free energy calculations for theophylline binding to an RNA aptamer: Comparison of MM-PBSA and thermodynamic integration methods. Gouda H; Kuntz ID; Case DA; Kollman PA Biopolymers; 2003 Jan; 68(1):16-34. PubMed ID: 12579577 [TBL] [Abstract][Full Text] [Related]
35. A Comparative Linear Interaction Energy and MM/PBSA Study on SIRT1-Ligand Binding Free Energy Calculation. Rifai EA; van Dijk M; Vermeulen NPE; Yanuar A; Geerke DP J Chem Inf Model; 2019 Sep; 59(9):4018-4033. PubMed ID: 31461271 [TBL] [Abstract][Full Text] [Related]
36. Rapid and accurate prediction of binding free energies for saquinavir-bound HIV-1 proteases. Stoica I; Sadiq SK; Coveney PV J Am Chem Soc; 2008 Feb; 130(8):2639-48. PubMed ID: 18225901 [TBL] [Abstract][Full Text] [Related]
37. Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein-protein binding free energies and re-rank binding poses generated by protein-protein docking. Chen F; Liu H; Sun H; Pan P; Li Y; Li D; Hou T Phys Chem Chem Phys; 2016 Aug; 18(32):22129-39. PubMed ID: 27444142 [TBL] [Abstract][Full Text] [Related]
38. Polarizable water networks in ligand-metalloprotein recognition. Impact on the relative complexation energies of Zn-dependent phosphomannose isomerase with D-mannose 6-phosphate surrogates. Gresh N; de Courcy B; Piquemal JP; Foret J; Courtiol-Legourd S; Salmon L J Phys Chem B; 2011 Jun; 115(25):8304-16. PubMed ID: 21650197 [TBL] [Abstract][Full Text] [Related]
39. Assessing the performance of MM/PBSA and MM/GBSA methods. 10. Prediction reliability of binding affinities and binding poses for RNA-ligand complexes. Jiang D; Du H; Zhao H; Deng Y; Wu Z; Wang J; Zeng Y; Zhang H; Wang X; Wang E; Hou T; Hsieh CY Phys Chem Chem Phys; 2024 Mar; 26(13):10323-10335. PubMed ID: 38501198 [TBL] [Abstract][Full Text] [Related]
40. Theoretical calculation of the binding free energies for pyruvate dehydrogenase E1 binding with ligands. Xiong Y; Li Y; He H; Zhan CG Bioorg Med Chem Lett; 2007 Sep; 17(18):5186-90. PubMed ID: 17644334 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]