These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 24432806)

  • 41. Physicochemical characterisation and biological evaluation of hydrogel-poly(epsilon-caprolactone) interpenetrating polymer networks as novel urinary biomaterials.
    Jones DS; McLaughlin DW; McCoy CP; Gorman SP
    Biomaterials; 2005 May; 26(14):1761-70. PubMed ID: 15576150
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Why degradable polymers undergo surface erosion or bulk erosion.
    von Burkersroda F; Schedl L; Göpferich A
    Biomaterials; 2002 Nov; 23(21):4221-31. PubMed ID: 12194525
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In vitro stability of polyether and polycarbonate urethanes.
    Tanzi MC; Farè S; Petrini P
    J Biomater Appl; 2000 Apr; 14(4):325-48. PubMed ID: 10794506
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Degradation studies on biodegradable nanocomposite based on polycaprolactone/polycarbonate (80:20%) polyhedral oligomeric silsesquioxane.
    Raghunath J; Georgiou G; Armitage D; Nazhat SN; Sales KM; Butler PE; Seifalian AM
    J Biomed Mater Res A; 2009 Dec; 91(3):834-44. PubMed ID: 19051308
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrospun aliphatic polycarbonates as tailored tissue scaffold materials.
    Welle A; Kröger M; Döring M; Niederer K; Pindel E; Chronakis IS
    Biomaterials; 2007 Apr; 28(13):2211-9. PubMed ID: 17275083
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In vitro degradation and mechanical properties of PLA-PCL copolymer unit cell scaffolds generated by two-photon polymerization.
    Felfel RM; Poocza L; Gimeno-Fabra M; Milde T; Hildebrand G; Ahmed I; Scotchford C; Sottile V; Grant DM; Liefeith K
    Biomed Mater; 2016 Feb; 11(1):015011. PubMed ID: 26836023
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Controlled degradation of multilayered poly(lactide-co-glycolide) films using electron beam irradiation.
    Chia NK; Venkatraman SS; Boey FY; Cadart S; Loo JS
    J Biomed Mater Res A; 2008 Mar; 84(4):980-7. PubMed ID: 17647238
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enzymatic Hydrolysis of Polyester Thin Films at the Nanoscale: Effects of Polyester Structure and Enzyme Active-Site Accessibility.
    Zumstein MT; Rechsteiner D; Roduner N; Perz V; Ribitsch D; Guebitz GM; Kohler HE; McNeill K; Sander M
    Environ Sci Technol; 2017 Jul; 51(13):7476-7485. PubMed ID: 28538100
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of a resorbable poly(ester urethane) with biodegradable hard segments.
    Dempsey DK; Robinson JL; Iyer AV; Parakka JP; Bezwada RS; Cosgriff-Hernandez EM
    J Biomater Sci Polym Ed; 2014; 25(6):535-54. PubMed ID: 24483140
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High-molecular-weight polycarbonates synthesized by enzymatic ROP of a cyclic carbonate as a green process.
    Yamamoto Y; Kaihara S; Toshima K; Matsumura S
    Macromol Biosci; 2009 Oct; 9(10):968-78. PubMed ID: 19544292
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Investigating the Biodegradation Mechanism of Poly(trimethylene carbonate): Macrophage-Mediated Erosion by Secreting Lipase.
    Wu L; Wang Y; Zhao X; Mao H; Gu Z
    Biomacromolecules; 2023 Feb; 24(2):921-928. PubMed ID: 36644840
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Poly(hexyl-substituted lactides): novel injectable hydrophobic drug delivery systems.
    Trimaille T; Gurny R; Möller M
    J Biomed Mater Res A; 2007 Jan; 80(1):55-65. PubMed ID: 16958050
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The influence of molecular weight distribution of poly(acrylic acid) on tensile bond strength of polycarboxylate cement.
    Umemoto K; Kurata S; Yamanaka A
    Bull Kanagawa Dent Coll; 1990 Mar; 18(1):29-32. PubMed ID: 2133793
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cascading "Triclick" functionalization of poly(caprolactone) thin films quantified via a quartz crystal microbalance.
    Lin F; Zheng J; Yu J; Zhou J; Becker ML
    Biomacromolecules; 2013 Aug; 14(8):2857-65. PubMed ID: 23795681
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Aliphatic Polycarbonates from Cyclic Carbonate Monomers and Their Application as Biomaterials.
    Yu W; Maynard E; Chiaradia V; Arno MC; Dove AP
    Chem Rev; 2021 Sep; 121(18):10865-10907. PubMed ID: 33591164
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biodegradation of aliphatic and aromatic polycarbonates.
    Artham T; Doble M
    Macromol Biosci; 2008 Jan; 8(1):14-24. PubMed ID: 17849431
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Development of biomedical porous titanium filled with medical polymer by in-situ polymerization of monomer solution infiltrated into pores.
    Nakai M; Niinomi M; Akahori T; Tsutsumi H; Itsuno S; Haraguchi N; Itoh Y; Ogasawara T; Onishi T; Shindoh T
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):41-50. PubMed ID: 19878901
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Environmentally Benign CO2-Based Copolymers: Degradable Polycarbonates Derived from Dihydroxybutyric Acid and Their Platinum-Polymer Conjugates.
    Tsai FT; Wang Y; Darensbourg DJ
    J Am Chem Soc; 2016 Apr; 138(13):4626-33. PubMed ID: 26974858
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biodegradable amphiphilic block-graft copolymers based on methoxy poly(ethylene glycol)-b-(polycarbonates-g-polycarbonates) for controlled release of doxorubicin.
    Jiang T; Li Y; Lv Y; Cheng Y; He F; Zhuo R
    J Mater Sci Mater Med; 2014 Jan; 25(1):131-9. PubMed ID: 24062230
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Polycarbonates from the polyhydroxy natural product quinic acid.
    Besset CJ; Lonnecker AT; Streff JM; Wooley KL
    Biomacromolecules; 2011 Jul; 12(7):2512-7. PubMed ID: 21644574
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.