These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. A comparison of dynamic mean field theory and grand canonical molecular dynamics for the dynamics of pore filling and capillary condensation of fluids in mesopores. Rathi A; Kikkinides ES; Ford DM; Monson PA J Chem Phys; 2018 Jul; 149(1):014703. PubMed ID: 29981543 [TBL] [Abstract][Full Text] [Related]
6. Connecting dynamic pore filling mechanisms with equilibrium and out of equilibrium configurations of fluids in nanopores. Kikkinides ES; Gkogkos G; Monson PA; Valiullin R J Chem Phys; 2022 Apr; 156(13):134702. PubMed ID: 35395874 [TBL] [Abstract][Full Text] [Related]
7. Forming transmembrane channels using end-functionalized nanotubes. Dutt M; Kuksenok O; Little SR; Balazs AC Nanoscale; 2011 Jan; 3(1):240-50. PubMed ID: 20976358 [TBL] [Abstract][Full Text] [Related]
8. Capillary filling in closed end nanochannels. Phan VN; Nguyen NT; Yang C; Joseph P; Djeghlaf L; Bourrier D; Gue AM Langmuir; 2010 Aug; 26(16):13251-5. PubMed ID: 20695566 [TBL] [Abstract][Full Text] [Related]
9. Cell dynamics simulation of droplet and bridge formation within striped nanocapillaries. Iwamatsu M Langmuir; 2007 Oct; 23(22):11051-7. PubMed ID: 17880249 [TBL] [Abstract][Full Text] [Related]
10. Molecular dynamics simulations of capillary rise experiments in nanotubes coated with polymer brushes. Dimitrov DI; Milchev A; Binder K Langmuir; 2008 Feb; 24(4):1232-9. PubMed ID: 17918870 [TBL] [Abstract][Full Text] [Related]
11. Mean field kinetic theory for a lattice gas model of fluids confined in porous materials. Monson PA J Chem Phys; 2008 Feb; 128(8):084701. PubMed ID: 18315066 [TBL] [Abstract][Full Text] [Related]
12. Density functional study of condensation in capped capillaries. Yatsyshin P; Savva N; Kalliadasis S J Phys Condens Matter; 2015 Jul; 27(27):275104. PubMed ID: 26086161 [TBL] [Abstract][Full Text] [Related]
13. Water filling of hydrophilic nanopores. de la Llave E; Molinero V; Scherlis DA J Chem Phys; 2010 Jul; 133(3):034513. PubMed ID: 20649343 [TBL] [Abstract][Full Text] [Related]
14. Dynamics of capillary condensation in lattice gas models of confined fluids: a comparison of dynamic mean field theory with dynamic Monte Carlo simulations. Edison JR; Monson PA J Chem Phys; 2013 Jun; 138(23):234709. PubMed ID: 23802978 [TBL] [Abstract][Full Text] [Related]
15. Effect of entrapped phase on the filling characteristics of closed-end nanopores. Bakli C; Chakraborty S Soft Matter; 2015 Jan; 11(1):161-8. PubMed ID: 25375220 [TBL] [Abstract][Full Text] [Related]
16. Theoretical studies on the transport mechanism of 5-fluorouracil through cyclic peptide based nanotubes. Vijayaraj R; Van Damme S; Bultinck P; Subramanian V Phys Chem Chem Phys; 2013 Jan; 15(4):1260-70. PubMed ID: 23229174 [TBL] [Abstract][Full Text] [Related]
17. Filling of carbon nanotubes with selenium by vapor phase process. Chancolon J; Archaimbault F; Pineau A; Bonnamy S J Nanosci Nanotechnol; 2006 Jan; 6(1):82-6. PubMed ID: 16573074 [TBL] [Abstract][Full Text] [Related]
18. Liquid-vapor oscillations of water nanoconfined between hydrophobic disks: thermodynamics and kinetics. Xu L; Molinero V J Phys Chem B; 2010 Jun; 114(21):7320-8. PubMed ID: 20446704 [TBL] [Abstract][Full Text] [Related]
19. Urea-induced drying of hydrophobic nanotubes: comparison of different urea models. Xiu P; Yang Z; Zhou B; Das P; Fang H; Zhou R J Phys Chem B; 2011 Mar; 115(12):2988-94. PubMed ID: 21384841 [TBL] [Abstract][Full Text] [Related]
20. Pore-scale evaporation-condensation dynamics resolved by synchrotron x-ray tomography. Shahraeeni E; Or D Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016317. PubMed ID: 22400668 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]