These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 24433022)

  • 21. Enhancing capacitive deionization technology as an effective method for water treatment using commercially available graphene.
    Dursun D; Ozkul S; Yuksel R; Unalan HE
    Water Sci Technol; 2017 Feb; 75(3-4):643-649. PubMed ID: 28192358
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Starch Derived Porous Carbon Nanosheets for High-Performance Photovoltaic Capacitive Deionization.
    Wu T; Wang G; Dong Q; Zhan F; Zhang X; Li S; Qiao H; Qiu J
    Environ Sci Technol; 2017 Aug; 51(16):9244-9251. PubMed ID: 28700208
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Capacitive deionization on-chip as a method for microfluidic sample preparation.
    Roelofs SH; Kim B; Eijkel JC; Han J; van den Berg A; Odijk M
    Lab Chip; 2015 Mar; 15(6):1458-64. PubMed ID: 25607349
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cellulose Derived Graphenic Fibers for Capacitive Desalination of Brackish Water.
    Pugazhenthiran N; Sen Gupta S; Prabhath A; Manikandan M; Swathy JR; Raman VK; Pradeep T
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20156-63. PubMed ID: 26305260
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Significance of the micropores electro-sorption resistance in capacitive deionization systems.
    Salamat Y; Hidrovo CH
    Water Res; 2020 Feb; 169():115286. PubMed ID: 31734390
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancing Performance of Capacitive Deionization with Polyelectrolyte-Infiltrated Electrodes: Theory and Experimental Validation.
    Wang L; Liang Y; Zhang L
    Environ Sci Technol; 2020 May; 54(9):5874-5883. PubMed ID: 32216292
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flow-Electrode Capacitive Deionization Using an Aqueous Electrolyte with a High Salt Concentration.
    Yang S; Choi J; Yeo JG; Jeon SI; Park HR; Kim DK
    Environ Sci Technol; 2016 Jun; 50(11):5892-9. PubMed ID: 27162028
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization.
    Hassanvand A; Chen GQ; Webley PA; Kentish SE
    Water Res; 2018 Mar; 131():100-109. PubMed ID: 29277078
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nonlinear dynamics of capacitive charging and desalination by porous electrodes.
    Biesheuvel PM; Bazant MZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031502. PubMed ID: 20365735
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coupling ion-exchangers with inexpensive activated carbon fiber electrodes to enhance the performance of capacitive deionization cells for domestic wastewater desalination.
    Liang P; Yuan L; Yang X; Zhou S; Huang X
    Water Res; 2013 May; 47(7):2523-30. PubMed ID: 23497976
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Concentration-Gradient Multichannel Flow-Stream Membrane Capacitive Deionization Cell for High Desalination Capacity of Carbon Electrodes.
    Kim C; Lee J; Srimuk P; Aslan M; Presser V
    ChemSusChem; 2017 Dec; 10(24):4914-4920. PubMed ID: 28685992
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energy breakdown in capacitive deionization.
    Hemmatifar A; Palko JW; Stadermann M; Santiago JG
    Water Res; 2016 Nov; 104():303-311. PubMed ID: 27565115
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Particulate-free porous silicon networks for efficient capacitive deionization water desalination.
    Metke T; Westover AS; Carter R; Oakes L; Douglas A; Pint CL
    Sci Rep; 2016 Apr; 6():24680. PubMed ID: 27101809
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energy recovery in membrane capacitive deionization.
    Długołęcki P; van der Wal A
    Environ Sci Technol; 2013 May; 47(9):4904-10. PubMed ID: 23477563
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Global Sensitivity Analysis To Characterize Operational Limits and Prioritize Performance Goals of Capacitive Deionization Technologies.
    Hand S; Shang X; Guest JS; Smith KC; Cusick RD
    Environ Sci Technol; 2019 Apr; 53(7):3748-3756. PubMed ID: 30821148
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage.
    Kim T; Dykstra JE; Porada S; van der Wal A; Yoon J; Biesheuvel PM
    J Colloid Interface Sci; 2015 May; 446():317-26. PubMed ID: 25278271
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extreme Monovalent Ion Selectivity Via Capacitive Ion Exchange.
    Sahray Z; Shocron AN; Uwayid R; Diesendruck CE; Suss ME
    Water Res; 2023 Nov; 246():120684. PubMed ID: 37864883
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of surface transport on water desalination by porous electrodes undergoing capacitive charging.
    Shocron AN; Suss ME
    J Phys Condens Matter; 2017 Mar; 29(8):084003. PubMed ID: 28092627
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Capacitive deionization for wastewater treatment: Opportunities and challenges.
    Kalfa A; Shapira B; Shopin A; Cohen I; Avraham E; Aurbach D
    Chemosphere; 2020 Feb; 241():125003. PubMed ID: 31590019
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing the Ion-Size-Based Selectivity of Capacitive Deionization Electrodes.
    Guyes EN; Malka T; Suss ME
    Environ Sci Technol; 2019 Jul; 53(14):8447-8454. PubMed ID: 31187620
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.