These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 24433112)

  • 1. Self-assembly of colloidal hexagonal bipyramid- and bifrustum-shaped ZnS nanocrystals into two-dimensional superstructures.
    van der Stam W; Gantapara AP; Akkerman QA; Soligno G; Meeldijk JD; van Roij R; Dijkstra M; de Mello Donega C
    Nano Lett; 2014 Feb; 14(2):1032-7. PubMed ID: 24433112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oleic Acid-Induced Atomic Alignment of ZnS Polyhedral Nanocrystals.
    van der Stam W; Rabouw FT; Vonk SJ; Geuchies JJ; Ligthart H; Petukhov AV; de Mello Donega C
    Nano Lett; 2016 Apr; 16(4):2608-14. PubMed ID: 26930124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colloidal Self-Assembly of Inorganic Nanocrystals into Superlattice Thin-Films and Multiscale Nanostructures.
    Yun H; Paik T
    Nanomaterials (Basel); 2019 Sep; 9(9):. PubMed ID: 31480547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trade-offs between Translational and Orientational Order in 2D Superlattices of Polygonal Nanocrystals with Differing Edge Count.
    Ondry JC; Frechette LB; Geissler PL; Alivisatos AP
    Nano Lett; 2022 Jan; 22(1):389-395. PubMed ID: 34935383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical self-assembly of suspended branched colloidal nanocrystals into superlattice structures.
    Miszta K; de Graaf J; Bertoni G; Dorfs D; Brescia R; Marras S; Ceseracciu L; Cingolani R; van Roij R; Dijkstra M; Manna L
    Nat Mater; 2011 Sep; 10(11):872-6. PubMed ID: 21946613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling nanocrystal superlattice symmetry and shape-anisotropic interactions through variable ligand surface coverage.
    Choi JJ; Bealing CR; Bian K; Hughes KJ; Zhang W; Smilgies DM; Hennig RG; Engstrom JR; Hanrath T
    J Am Chem Soc; 2011 Mar; 133(9):3131-8. PubMed ID: 21306161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Role of Ligand Packing Frustration in Body-Centered Cubic (bcc) Superlattices of Colloidal Nanocrystals.
    Goodfellow BW; Yu Y; Bosoy CA; Smilgies DM; Korgel BA
    J Phys Chem Lett; 2015 Jul; 6(13):2406-12. PubMed ID: 26266710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulating Multiple Variables To Understand the Nucleation and Growth and Transformation of PbS Nanocrystal Superlattices.
    Wang Z; Bian K; Nagaoka Y; Fan H; Cao YC
    J Am Chem Soc; 2017 Oct; 139(41):14476-14482. PubMed ID: 28953387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superstructures generated from truncated tetrahedral quantum dots.
    Nagaoka Y; Tan R; Li R; Zhu H; Eggert D; Wu YA; Liu Y; Wang Z; Chen O
    Nature; 2018 Sep; 561(7723):378-382. PubMed ID: 30232427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical properties of ordered superstructures formed from cadmium and lead chalcogenide colloidal nanocrystals.
    Ushakova EV; Cherevkov SA; Litvin AP; Parfenov PS; Zakharov VV; Dubavik A; Fedorov AV; Baranov AV
    Opt Express; 2016 Jan; 24(2):A58-64. PubMed ID: 26832598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible Polymer-Assisted Mesoscale Self-Assembly of Colloidal CsPbBr
    Yang Y; Lee JT; Liyanage T; Sardar R
    J Am Chem Soc; 2019 Jan; 141(4):1526-1536. PubMed ID: 30608690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binary Assembly of PbS and Au Nanocrystals: Patchy PbS Surface Ligand Coverage Stabilizes the CuAu Superlattice.
    Boles MA; Talapin DV
    ACS Nano; 2019 May; 13(5):5375-5384. PubMed ID: 31017762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Assembly of One-Dimensional Nanocrystal Superlattice Chains Mediated by Molecular Clusters.
    Zhang X; Lv L; Ji L; Guo G; Liu L; Han D; Wang B; Tu Y; Hu J; Yang D; Dong A
    J Am Chem Soc; 2016 Mar; 138(10):3290-3. PubMed ID: 26936281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Symmetry control of nanorod superlattice driven by a governing force.
    Liang Y; Xie Y; Chen D; Guo C; Hou S; Wen T; Yang F; Deng K; Wu X; Smalyukh II; Liu Q
    Nat Commun; 2017 Nov; 8(1):1410. PubMed ID: 29123101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the Formation of Honeycomb Superlattices from PbSe Quantum Dots: The Role of Solvent-Mediated Repulsion and Facet-to-Facet Attraction in NC Self-Assembly and Alignment.
    van der Sluijs MM; Sanders D; Jansen KJ; Soligno G; Vanmaekelbergh D; Peters JL
    J Phys Chem C Nanomater Interfaces; 2022 Jan; 126(2):986-996. PubMed ID: 35087608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controllable synthesis of star-shaped FeCoMnO
    Xia Z; Gao Y; Cai Q; Wang Y; Yang D; Li T; Dong A
    Chem Commun (Camb); 2024 Mar; 60(25):3409-3412. PubMed ID: 38440958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binary and ternary superlattices self-assembled from colloidal nanodisks and nanorods.
    Paik T; Diroll BT; Kagan CR; Murray CB
    J Am Chem Soc; 2015 May; 137(20):6662-9. PubMed ID: 25927895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coexistence of hcp and bct Phases during In Situ Superlattice Assembly from Faceted Colloidal Nanocrystals.
    Lokteva I; Koof M; Walther M; Grübel G; Lehmkühler F
    J Phys Chem Lett; 2019 Oct; 10(20):6331-6338. PubMed ID: 31578064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interface-induced nucleation, orientational alignment and symmetry transformations in nanocube superlattices.
    Choi JJ; Bian K; Baumgardner WJ; Smilgies DM; Hanrath T
    Nano Lett; 2012 Sep; 12(9):4791-8. PubMed ID: 22888985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of orientation-ordered superlattices of magnetite magnetic nanocrystals from shape-segregated self-assemblies.
    Song Q; Ding Y; Wang ZL; Zhang ZJ
    J Phys Chem B; 2006 Dec; 110(50):25547-50. PubMed ID: 17166006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.