These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 24433910)
1. Adhesive strength of medical polymer on anodic oxide nanostructures fabricated on biomedical β-type titanium alloy. Hieda J; Niinomi M; Nakai M; Cho K; Mohri T; Hanawa T Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():244-51. PubMed ID: 24433910 [TBL] [Abstract][Full Text] [Related]
2. Improvement of adhesive strength of segmented polyurethane on Ti-29Nb-13Ta-4.6Zr alloy through H₂O₂ treatment for biomedical applications. Hieda J; Niinomi M; Nakai M; Kamura H; Tsutsumi H; Hanawa T J Biomed Mater Res B Appl Biomater; 2013 Jul; 101(5):776-83. PubMed ID: 23359401 [TBL] [Abstract][Full Text] [Related]
3. Adhesive strength of bioactive oxide layers fabricated on TNTZ alloy by three different alkali-solution treatments. Takematsu E; Cho K; Hieda J; Nakai M; Katsumata K; Okada K; Niinomi M; Matsushita N J Mech Behav Biomed Mater; 2016 Aug; 61():174-181. PubMed ID: 26866453 [TBL] [Abstract][Full Text] [Related]
4. Bioactive surface modification of Ti-29Nb-13Ta-4.6Zr alloy through alkali solution treatments. Takematsu E; Katsumata K; Okada K; Niinomi M; Matsushita N Mater Sci Eng C Mater Biol Appl; 2016 May; 62():662-7. PubMed ID: 26952470 [TBL] [Abstract][Full Text] [Related]
5. Wear transition of solid-solution-strengthened Ti-29Nb-13Ta-4.6Zr alloys by interstitial oxygen for biomedical applications. Lee YS; Niinomi M; Nakai M; Narita K; Cho K; Liu H J Mech Behav Biomed Mater; 2015 Nov; 51():398-408. PubMed ID: 26301568 [TBL] [Abstract][Full Text] [Related]
6. Enhancement of adhesive strength of hydroxyapatite films on Ti-29Nb-13Ta-4.6Zr by surface morphology control. Hieda J; Niinomi M; Nakai M; Cho K; Gozawa T; Katsui H; Tu R; Goto T J Mech Behav Biomed Mater; 2013 Feb; 18():232-9. PubMed ID: 23274485 [TBL] [Abstract][Full Text] [Related]
7. Fatigue characteristics of bioactive glass-ceramic-coated Ti-29Nb-13Ta-4.6Zr for biomedical application. Li SJ; Niinomi M; Akahori T; Kasuga T; Yang R; Hao YL Biomaterials; 2004 Aug; 25(17):3369-78. PubMed ID: 15020109 [TBL] [Abstract][Full Text] [Related]
8. Heterogeneous structure and mechanical hardness of biomedical β-type Ti-29Nb-13Ta-4.6Zr subjected to high-pressure torsion. Yilmazer H; Niinomi M; Nakai M; Hieda J; Todaka Y; Akahori T; Miyazaki T J Mech Behav Biomed Mater; 2012 Jun; 10():235-45. PubMed ID: 22520435 [TBL] [Abstract][Full Text] [Related]
9. Effects of micro- and nano-scale wave-like structures on fatigue strength of a beta-type titanium alloy developed as a biomaterial. Narita K; Niinomi M; Nakai M J Mech Behav Biomed Mater; 2014 Jan; 29():393-402. PubMed ID: 24184863 [TBL] [Abstract][Full Text] [Related]
10. Deformation-induced ω phase in modified Ti-29Nb-13Ta-4.6Zr alloy by Cr addition. Li Q; Niinomi M; Hieda J; Nakai M; Cho K Acta Biomater; 2013 Aug; 9(8):8027-35. PubMed ID: 23624220 [TBL] [Abstract][Full Text] [Related]
11. An electrochemical study on self-ordered nanoporous and nanotubular oxide on Ti-35Nb-5Ta-7Zr alloy for biomedical applications. Saji VS; Choe HC; Brantley WA Acta Biomater; 2009 Jul; 5(6):2303-10. PubMed ID: 19289307 [TBL] [Abstract][Full Text] [Related]
12. Development of thermo-mechanical processing for fabricating highly durable β-type Ti-Nb-Ta-Zr rod for use in spinal fixation devices. Narita K; Niinomi M; Nakai M; Hieda J; Oribe K J Mech Behav Biomed Mater; 2012 May; 9():207-16. PubMed ID: 22498297 [TBL] [Abstract][Full Text] [Related]
13. Predominant factor determining wear properties of β-type and (α+β)-type titanium alloys in metal-to-metal contact for biomedical applications. Lee YS; Niinomi M; Nakai M; Narita K; Cho K J Mech Behav Biomed Mater; 2015 Jan; 41():208-20. PubMed ID: 25460417 [TBL] [Abstract][Full Text] [Related]
14. Bending springback behavior related to deformation-induced phase transformations in Ti-12Cr and Ti-29Nb-13Ta-4.6Zr alloys for spinal fixation applications. Liu H; Niinomi M; Nakai M; Hieda J; Cho K J Mech Behav Biomed Mater; 2014 Jun; 34():66-74. PubMed ID: 24561725 [TBL] [Abstract][Full Text] [Related]
15. Nanohydroxyapatite coating on a titanium-niobium alloy by a hydrothermal process. Xiong J; Li Y; Hodgson PD; Wen C Acta Biomater; 2010 Apr; 6(4):1584-90. PubMed ID: 19836001 [TBL] [Abstract][Full Text] [Related]
16. Corrosion behavior of nanotubular oxide on the Ti-29Nb-xZr alloy. Kim JU; Kim BH; Lee K; Choe HC; Ko YM J Nanosci Nanotechnol; 2011 Feb; 11(2):1636-9. PubMed ID: 21456255 [TBL] [Abstract][Full Text] [Related]
17. Functional Studies of Anodic Oxidized β-Ti-28Nb-11Ta-8Zr Alloy for Mechanical, In-vitro and Antibacterial Capability. Lin HI; Kuo YM; Hu CC; Lee MH; Chen LH; Li CT; Wong TH; Yen TJ Sci Rep; 2018 Sep; 8(1):14253. PubMed ID: 30250121 [TBL] [Abstract][Full Text] [Related]
18. Formation and growth of calcium phosphate on the surface of oxidized Ti-29Nb-13Ta-4.6Zr alloy. Li SJ; Yang R; Niinomi M; Hao YL; Cui YY Biomaterials; 2004 Jun; 25(13):2525-32. PubMed ID: 14751737 [TBL] [Abstract][Full Text] [Related]
19. Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti-29Nb-13Ta-4.6Zr. Niinomi M Biomaterials; 2003 Jul; 24(16):2673-83. PubMed ID: 12711513 [TBL] [Abstract][Full Text] [Related]
20. Biocompatibility of nanotube formed Ti-30Nb-7Ta alloys. Kim ES; Choe HC J Nanosci Nanotechnol; 2014 Nov; 14(11):8427-31. PubMed ID: 25958540 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]