These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 24433976)

  • 41. Cone-like bubble formation in ultrasonic cavitation field.
    Moussatov A; Granger C; Dubus B
    Ultrason Sonochem; 2003 Jul; 10(4-5):191-5. PubMed ID: 12818381
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nonequilibrium bubbles in a flowing langmuir monolayer.
    Muruganathan R; Khattari Z; Fischer TM
    J Phys Chem B; 2005 Nov; 109(46):21772-8. PubMed ID: 16853828
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The acoustic emissions of cavitation bubbles in stretched vortices.
    Chang NA; Ceccio SL
    J Acoust Soc Am; 2011 Nov; 130(5):3209-19. PubMed ID: 22087993
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Towards an understanding and control of cavitation activity in 1 MHz ultrasound fields.
    Hauptmann M; Struyf H; Mertens P; Heyns M; De Gendt S; Glorieux C; Brems S
    Ultrason Sonochem; 2013 Jan; 20(1):77-88. PubMed ID: 22705075
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The effect of frequency doubled double pulse Nd:YAG laser fiber proximity to the target stone on transient cavitation and acoustic emission.
    Fuh E; Haleblian GE; Norris RD; Albala WD; Simmons N; Zhong P; Preminger GM
    J Urol; 2007 Apr; 177(4):1542-5. PubMed ID: 17382775
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The characterization of acoustic cavitation bubbles - an overview.
    Ashokkumar M
    Ultrason Sonochem; 2011 Jul; 18(4):864-72. PubMed ID: 21172736
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optical observation of shock waves and cavitation bubbles in high intensity laser-induced shock processes.
    Martí-López L; Ocaña R; Porro JA; Morales M; Ocaña JL
    Appl Opt; 2009 Jul; 48(19):3671-80. PubMed ID: 19571922
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ultrasonic Bending Vibration-Assisted Purification Experimental Study of 7085 Aluminum Alloy Melt.
    Shi C; He J; Liao H; Mao D
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629624
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Spatial distribution of sonoluminescence and sonochemiluminescence generated by cavitation bubbles in 1.2 MHz focused ultrasound field.
    Cao H; Wan M; Qiao Y; Zhang S; Li R
    Ultrason Sonochem; 2012 Mar; 19(2):257-63. PubMed ID: 21862375
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The influence of air content in water on ultrasonic cavitation field.
    Liu L; Yang Y; Liu P; Tan W
    Ultrason Sonochem; 2014 Mar; 21(2):566-71. PubMed ID: 24230967
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The range of ambient radius for an active bubble in sonoluminescence and sonochemical reactions.
    Yasui K; Tuziuti T; Lee J; Kozuka T; Towata A; Iida Y
    J Chem Phys; 2008 May; 128(18):184705. PubMed ID: 18532834
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The role of ultrasound in hydrogen removal and microstructure refinement by ultrasonic argon degassing process.
    Liu X; Zhang C; Zhang Z; Xue J; Le Q
    Ultrason Sonochem; 2017 Sep; 38():455-462. PubMed ID: 28633847
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Acoustic cavitation mechanism: a nonlinear model.
    Vanhille C; Campos-Pozuelo C
    Ultrason Sonochem; 2012 Mar; 19(2):217-20. PubMed ID: 21802973
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Three orthogonal ultrasounds fabricate uniform ternary Al-Sn-Cu immiscible alloy.
    Zhai W; Wang BJ; Liu HM; Hu L; Wei B
    Sci Rep; 2016 Nov; 6():36718. PubMed ID: 27841283
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of surfactants on inertial cavitation activity in a pulsed acoustic field.
    Lee J; Kentish S; Matula TJ; Ashokkumar M
    J Phys Chem B; 2005 Sep; 109(35):16860-5. PubMed ID: 16853145
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of an acoustic cavitation bubble structure at 230 kHz.
    Thiemann A; Nowak T; Mettin R; Holsteyns F; Lippert A
    Ultrason Sonochem; 2011 Mar; 18(2):595-600. PubMed ID: 21041109
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modeling of interaction between therapeutic ultrasound propagation and cavitation bubbles.
    Liebler M; Dreyer T; Riedlinger RE
    Ultrasonics; 2006 Dec; 44 Suppl 1():e319-24. PubMed ID: 16908041
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The correlation between bubble-enhanced HIFU heating and cavitation power.
    Farny CH; Glynn Holt R; Roy RA
    IEEE Trans Biomed Eng; 2010 Jan; 57(1):175-84. PubMed ID: 19651548
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ultrasonic imaging system for the study of decompression-induced gas bubbles.
    Daniels S; Paton WD; Smith EB
    Undersea Biomed Res; 1979 Jun; 6(2):197-207. PubMed ID: 531998
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ray-based acoustic localization of cavitation in a highly reverberant environment.
    Chang NA; Dowling DR
    J Acoust Soc Am; 2009 May; 125(5):3088-100. PubMed ID: 19425652
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.