These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24434125)

  • 1. A data-driven multiplicative fault diagnosis approach for automation processes.
    Hao H; Zhang K; Ding SX; Chen Z; Lei Y
    ISA Trans; 2014 Sep; 53(5):1436-45. PubMed ID: 24434125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using the expected detection delay to assess the performance of different multivariate statistical process monitoring methods for multiplicative and drift faults.
    Zhang K; Shardt YAW; Chen Z; Peng K
    ISA Trans; 2017 Mar; 67():56-66. PubMed ID: 27894700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear Process Fault Diagnosis Based on Serial Principal Component Analysis.
    Deng X; Tian X; Chen S; Harris CJ
    IEEE Trans Neural Netw Learn Syst; 2018 Mar; 29(3):560-572. PubMed ID: 28026785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model-based monitoring and fault diagnosis of fossil power plant process units using Group Method of Data Handling.
    Li F; Upadhyaya BR; Coffey LA
    ISA Trans; 2009 Apr; 48(2):213-9. PubMed ID: 19084227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fault Detection and Isolation of Non-Gaussian and Nonlinear Processes Based on Statistics Pattern Analysis and the
    Zhou Z; Wang J; Yang C; Wen C; Li Z
    ACS Omega; 2022 Jun; 7(22):18623-18637. PubMed ID: 35694521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring Nonlinear and Non-Gaussian Processes Using Gaussian Mixture Model-Based Weighted Kernel Independent Component Analysis.
    Cai L; Tian X; Chen S
    IEEE Trans Neural Netw Learn Syst; 2017 Jan; 28(1):122-135. PubMed ID: 26685274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian classifiers applied to the Tennessee Eastman process.
    Dos Santos EB; Ebecken NF; Hruschka ER; Elkamel A; Madhuranthakam CM
    Risk Anal; 2014 Mar; 34(3):485-97. PubMed ID: 24117732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fault Identification of Chemical Processes Based on k-NN Variable Contribution and CNN Data Reconstruction Methods.
    Wang GZ; Li J; Hu YT; Li Y; Du ZY
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30813310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fault isolation strategy for industrial processes using outlier-degree-based variable contributions.
    Mu L; Sun W; Zhang Y; Feng N; Xue X; Li Q
    ISA Trans; 2024 Jun; ():. PubMed ID: 38862336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fault Detection for Nonlinear Process With Deterministic Disturbances: A Just-In-Time Learning Based Data Driven Method.
    Yin S; Gao H; Qiu J; Kaynak O
    IEEE Trans Cybern; 2017 Nov; 47(11):3649-3657. PubMed ID: 27416612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel key performance indicator oriented hierarchical monitoring and propagation path identification framework for complex industrial processes.
    Ma L; Dong J; Peng K
    ISA Trans; 2020 Jan; 96():1-13. PubMed ID: 31196562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple sensor fault diagnosis for dynamic processes.
    Li CC; Jeng JC
    ISA Trans; 2010 Oct; 49(4):415-32. PubMed ID: 20542268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensor fault diagnosis for nonlinear processes with parametric uncertainties.
    Rajaraman S; Hahn J; Mannan MS
    J Hazard Mater; 2006 Mar; 130(1-2):1-8. PubMed ID: 16298476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A KPI-based process monitoring and fault detection framework for large-scale processes.
    Zhang K; Shardt YAW; Chen Z; Yang X; Ding SX; Peng K
    ISA Trans; 2017 May; 68():276-286. PubMed ID: 28190565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An adaptive metaheuristic optimization approach for Tennessee Eastman process for an industrial fault tolerant control system.
    Mustafa FE; Ahmed I; Basit A; Alqahtani M; Khalid M
    PLoS One; 2024; 19(2):e0296471. PubMed ID: 38381738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Partial Cross Mapping Based on Sparse Variable Selection for Direct Fault Root Cause Diagnosis for Industrial Processes.
    Jiang Q; Jiang J; Wang W; Pan C; Zhong W
    IEEE Trans Neural Netw Learn Syst; 2024 May; 35(5):6218-6230. PubMed ID: 37022853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multivariate fault isolation of batch processes via variable selection in partial least squares discriminant analysis.
    Yan Z; Kuang TH; Yao Y
    ISA Trans; 2017 Sep; 70():389-399. PubMed ID: 28666569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying multiplicative interactions between temporal scales of human movement variability.
    Ihlen EA; Vereijken B
    Ann Biomed Eng; 2013 Aug; 41(8):1635-45. PubMed ID: 23247986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-fault clustering and diagnosis of gear system mined by spectrum entropy clustering based on higher order cumulants.
    Shao R; Li J; Hu W; Dong F
    Rev Sci Instrum; 2013 Feb; 84(2):025107. PubMed ID: 23464251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hybrid fault diagnosis approach based on mixed-domain state features for rotating machinery.
    Xue X; Zhou J
    ISA Trans; 2017 Jan; 66():284-295. PubMed ID: 27865432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.