BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 24434321)

  • 1. The enduring tale of T cells in HIV immunopathogenesis.
    Vajpayee M; Negi N; Kurapati S
    Indian J Med Res; 2013 Nov; 138(5):682-99. PubMed ID: 24434321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current understanding of HIV-1 and T-cell adaptive immunity: progress to date.
    Mohan T; Bhatnagar S; Gupta DL; Rao DN
    Microb Pathog; 2014 Aug; 73():60-9. PubMed ID: 24930593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disruption of Type I Interferon Induction by HIV Infection of T Cells.
    Sanchez DJ; Miranda D; Marsden MD; Dizon TM; Bontemps JR; Davila SJ; Del Mundo LE; Ha T; Senaati A; Zack JA; Cheng G
    PLoS One; 2015; 10(9):e0137951. PubMed ID: 26375588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Innate immune sensing of HIV infection.
    Silvin A; Manel N
    Curr Opin Immunol; 2015 Feb; 32():54-60. PubMed ID: 25617674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Restriction Factors: From Intrinsic Viral Restriction to Shaping Cellular Immunity Against HIV-1.
    Colomer-Lluch M; Ruiz A; Moris A; Prado JG
    Front Immunol; 2018; 9():2876. PubMed ID: 30574147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HIV persistence: chemokines and their signalling pathways.
    Evans VA; Khoury G; Saleh S; Cameron PU; Lewin SR
    Cytokine Growth Factor Rev; 2012; 23(4-5):151-7. PubMed ID: 22749173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Innate immune recognition of HIV-1.
    Iwasaki A
    Immunity; 2012 Sep; 37(3):389-98. PubMed ID: 22999945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gut-homing Δ42PD1
    Cheung AKL; Kwok HY; Huang Y; Chen M; Mo Y; Wu X; Lam KS; Kong HK; Lau TCK; Zhou J; Li J; Cheng L; Kiat Lee B; Peng Q; Lu X; An M; Wang H; Shang H; Zhou B; Wu H; Xu A; Yuen KY; Chen Z
    Nat Microbiol; 2017 Oct; 2(10):1389-1402. PubMed ID: 28808299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. T-cell exhaustion in HIV infection.
    Fenwick C; Joo V; Jacquier P; Noto A; Banga R; Perreau M; Pantaleo G
    Immunol Rev; 2019 Nov; 292(1):149-163. PubMed ID: 31883174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytokine production and dysregulation in HIV pathogenesis: lessons for development of therapeutics and vaccines.
    Reuter MA; Pombo C; Betts MR
    Cytokine Growth Factor Rev; 2012; 23(4-5):181-91. PubMed ID: 22743036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronic innate immune activation as a cause of HIV-1 immunopathogenesis.
    Boasso A; Shearer GM
    Clin Immunol; 2008 Mar; 126(3):235-42. PubMed ID: 17916442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NK Cells in HIV-1 Infection: From Basic Science to Vaccine Strategies.
    Flórez-Álvarez L; Hernandez JC; Zapata W
    Front Immunol; 2018; 9():2290. PubMed ID: 30386329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Innate and adaptive immune responses both contribute to pathological CD4 T cell activation in HIV-1 infected Ugandans.
    Eller MA; Blom KG; Gonzalez VD; Eller LA; Naluyima P; Laeyendecker O; Quinn TC; Kiwanuka N; Serwadda D; Sewankambo NK; Tasseneetrithep B; Wawer MJ; Gray RH; Marovich MA; Michael NL; de Souza MS; Wabwire-Mangen F; Robb ML; Currier JR; Sandberg JK
    PLoS One; 2011 Apr; 6(4):e18779. PubMed ID: 21526194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct gene-expression profiles associated with the susceptibility of pathogen-specific CD4 T cells to HIV-1 infection.
    Hu H; Nau M; Ehrenberg P; Chenine AL; Macedo C; Zhou Y; Daye ZJ; Wei Z; Vahey M; Michael NL; Kim JH; Marovich M; Ratto-Kim S
    Blood; 2013 Feb; 121(7):1136-44. PubMed ID: 23258923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Innate immunity and HIV-1 infection.
    Lehner T; Wang Y; Whittall T; Seidl T
    Adv Dent Res; 2011 Apr; 23(1):19-22. PubMed ID: 21441475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HIV Exploits Antiviral Host Innate GCN2-ATF4 Signaling for Establishing Viral Replication Early in Infection.
    Jiang G; Santos Rocha C; Hirao LA; Mendes EA; Tang Y; Thompson GR; Wong JK; Dandekar S
    mBio; 2017 May; 8(3):. PubMed ID: 28465428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural killer cells in HIV-1 infection: a double-edged sword.
    Funke J; Dürr R; Dietrich U; Koch J
    AIDS Rev; 2011; 13(2):67-76. PubMed ID: 21587340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HIV-1 Nef and Vpu Interfere with L-Selectin (CD62L) Cell Surface Expression To Inhibit Adhesion and Signaling in Infected CD4+ T Lymphocytes.
    Vassena L; Giuliani E; Koppensteiner H; Bolduan S; Schindler M; Doria M
    J Virol; 2015 May; 89(10):5687-700. PubMed ID: 25822027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immune dysregulation and CD4+ T cell loss in HIV-1 infection.
    Meyaard L; Miedema F
    Springer Semin Immunopathol; 1997; 18(3):285-303. PubMed ID: 9089950
    [No Abstract]   [Full Text] [Related]  

  • 20. Increase in frequencies of circulating Th-17 cells correlates with microbial translocation, immune activation and exhaustion in HIV-1 infected patients with poor CD4 T-cell reconstitution.
    Valiathan R; Asthana D
    Immunobiology; 2016 May; 221(5):670-8. PubMed ID: 26817581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.