BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 24434551)

  • 1. Carlactone is an endogenous biosynthetic precursor for strigolactones.
    Seto Y; Sado A; Asami K; Hanada A; Umehara M; Akiyama K; Yamaguchi S
    Proc Natl Acad Sci U S A; 2014 Jan; 111(4):1640-5. PubMed ID: 24434551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro.
    Abe S; Sado A; Tanaka K; Kisugi T; Asami K; Ota S; Kim HI; Yoneyama K; Xie X; Ohnishi T; Seto Y; Yamaguchi S; Akiyama K; Yoneyama K; Nomura T
    Proc Natl Acad Sci U S A; 2014 Dec; 111(50):18084-9. PubMed ID: 25425668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis.
    Zhang Y; van Dijk AD; Scaffidi A; Flematti GR; Hofmann M; Charnikhova T; Verstappen F; Hepworth J; van der Krol S; Leyser O; Smith SM; Zwanenburg B; Al-Babili S; Ruyter-Spira C; Bouwmeester HJ
    Nat Chem Biol; 2014 Dec; 10(12):1028-33. PubMed ID: 25344813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereospecificity in strigolactone biosynthesis and perception.
    Flematti GR; Scaffidi A; Waters MT; Smith SM
    Planta; 2016 Jun; 243(6):1361-73. PubMed ID: 27105887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for species-dependent biosynthetic pathways for converting carlactone to strigolactones in plants.
    Iseki M; Shida K; Kuwabara K; Wakabayashi T; Mizutani M; Takikawa H; Sugimoto Y
    J Exp Bot; 2018 Apr; 69(9):2305-2318. PubMed ID: 29294064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the substrate specificity of the rice strigolactone biosynthesis enzyme DWARF27.
    Bruno M; Al-Babili S
    Planta; 2016 Jun; 243(6):1429-40. PubMed ID: 26945857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From carotenoids to strigolactones.
    Jia KP; Baz L; Al-Babili S
    J Exp Bot; 2018 Apr; 69(9):2189-2204. PubMed ID: 29253188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical identification of 18-hydroxycarlactonoic acid as an LjMAX1 product and in planta conversion of its methyl ester to canonical and non-canonical strigolactones in Lotus japonicus.
    Mori N; Sado A; Xie X; Yoneyama K; Asami K; Seto Y; Nomura T; Yamaguchi S; Yoneyama K; Akiyama K
    Phytochemistry; 2020 Jun; 174():112349. PubMed ID: 32213359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of carlactone to carlactonoic acid is a conserved function of MAX1 homologs in strigolactone biosynthesis.
    Yoneyama K; Mori N; Sato T; Yoda A; Xie X; Okamoto M; Iwanaga M; Ohnishi T; Nishiwaki H; Asami T; Yokota T; Akiyama K; Yoneyama K; Nomura T
    New Phytol; 2018 Jun; 218(4):1522-1533. PubMed ID: 29479714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CYP722C from Gossypium arboreum catalyzes the conversion of carlactonoic acid to 5-deoxystrigol.
    Wakabayashi T; Shida K; Kitano Y; Takikawa H; Mizutani M; Sugimoto Y
    Planta; 2020 Apr; 251(5):97. PubMed ID: 32306106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of D-ring C-3' methylation of strigolactone analogs on their transcription regulating activity in rice.
    Jamil M; Haider I; Kountche BA; Al-Babili S
    Plant Signal Behav; 2019; 14(11):1668234. PubMed ID: 31552795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strigolactones, a novel carotenoid-derived plant hormone.
    Al-Babili S; Bouwmeester HJ
    Annu Rev Plant Biol; 2015; 66():161-86. PubMed ID: 25621512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Confirming stereochemical structures of strigolactones produced by rice and tobacco.
    Xie X; Yoneyama K; Kisugi T; Uchida K; Ito S; Akiyama K; Hayashi H; Yokota T; Nomura T; Yoneyama K
    Mol Plant; 2013 Jan; 6(1):153-63. PubMed ID: 23204500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of two oxygenase genes involved in the respective biosynthetic pathways of canonical and non-canonical strigolactones in Lotus japonicus.
    Mori N; Nomura T; Akiyama K
    Planta; 2020 Jan; 251(2):40. PubMed ID: 31907631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones.
    Waters MT; Brewer PB; Bussell JD; Smith SM; Beveridge CA
    Plant Physiol; 2012 Jul; 159(3):1073-85. PubMed ID: 22623516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The tomato MAX1 homolog, SlMAX1, is involved in the biosynthesis of tomato strigolactones from carlactone.
    Zhang Y; Cheng X; Wang Y; Díez-Simón C; Flokova K; Bimbo A; Bouwmeester HJ; Ruyter-Spira C
    New Phytol; 2018 Jul; 219(1):297-309. PubMed ID: 29655242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice.
    Umehara M; Hanada A; Magome H; Takeda-Kamiya N; Yamaguchi S
    Plant Cell Physiol; 2010 Jul; 51(7):1118-26. PubMed ID: 20542891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Stereoselective Strigolactone Biosynthesis Catalyzed by a 2-Oxoglutarate-Dependent Dioxygenase in Sorghum.
    Yoda A; Xie X; Yoneyama K; Miura K; McErlean CSP; Nomura T
    Plant Cell Physiol; 2023 Sep; 64(9):1034-1045. PubMed ID: 37307421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Requirements of Strigolactones for Shoot Branching Inhibition in Rice and Arabidopsis.
    Umehara M; Cao M; Akiyama K; Akatsu T; Seto Y; Hanada A; Li W; Takeda-Kamiya N; Morimoto Y; Yamaguchi S
    Plant Cell Physiol; 2015 Jun; 56(6):1059-72. PubMed ID: 25713176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strigolactone biosynthesis is evolutionarily conserved, regulated by phosphate starvation and contributes to resistance against phytopathogenic fungi in a moss, Physcomitrella patens.
    Decker EL; Alder A; Hunn S; Ferguson J; Lehtonen MT; Scheler B; Kerres KL; Wiedemann G; Safavi-Rizi V; Nordzieke S; Balakrishna A; Baz L; Avalos J; Valkonen JPT; Reski R; Al-Babili S
    New Phytol; 2017 Oct; 216(2):455-468. PubMed ID: 28262967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.