These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 24434717)

  • 1. Estimation of ligand affinity constants for receptor states in functional studies involving the allosteric modulation of G protein-coupled receptors: implications for ligand bias.
    Ehlert FJ; Griffin MT
    J Pharmacol Toxicol Methods; 2014; 69(3):253-79. PubMed ID: 24434717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of the receptor-state affinity constants of ligands in functional studies using wild type and constitutively active mutant receptors: Implications for estimation of agonist bias.
    Ehlert FJ; Stein RS
    J Pharmacol Toxicol Methods; 2017; 83():94-106. PubMed ID: 27725245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional studies cast light on receptor states.
    Ehlert FJ
    Trends Pharmacol Sci; 2015 Sep; 36(9):596-604. PubMed ID: 26123416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. What ligand-gated ion channels can tell us about the allosteric regulation of G protein-coupled receptors.
    Ehlert FJ
    Prog Mol Biol Transl Sci; 2013; 115():291-347. PubMed ID: 23415097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Monod-Wyman-Changeux mechanism can explain G protein-coupled receptor (GPCR) allosteric modulation.
    Canals M; Lane JR; Wen A; Scammells PJ; Sexton PM; Christopoulos A
    J Biol Chem; 2012 Jan; 287(1):650-659. PubMed ID: 22086918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of agonism and inverse agonism in functional assays with constitutive activity: estimation of orthosteric ligand affinity constants for active and inactive receptor states.
    Ehlert FJ; Suga H; Griffin MT
    J Pharmacol Exp Ther; 2011 Aug; 338(2):671-86. PubMed ID: 21576379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of Biased Agonism.
    Ehlert FJ
    Prog Mol Biol Transl Sci; 2018; 160():63-104. PubMed ID: 30470293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A kinetic model of GPCRs: analysis of G protein activity, occupancy, coupling and receptor-state affinity constants.
    Stein RS; Ehlert FJ
    J Recept Signal Transduct Res; 2015; 35(4):269-83. PubMed ID: 25353707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. When simple agonism is not enough: emerging modalities of GPCR ligands.
    Smith NJ; Bennett KA; Milligan G
    Mol Cell Endocrinol; 2011 Jan; 331(2):241-7. PubMed ID: 20654693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unravelling intrinsic efficacy and ligand bias at G protein coupled receptors: A practical guide to assessing functional data.
    Stott LA; Hall DA; Holliday ND
    Biochem Pharmacol; 2016 Feb; 101():1-12. PubMed ID: 26478533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probe dependence in the allosteric modulation of a G protein-coupled receptor: implications for detection and validation of allosteric ligand effects.
    Valant C; Felder CC; Sexton PM; Christopoulos A
    Mol Pharmacol; 2012 Jan; 81(1):41-52. PubMed ID: 21989256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Operational Models of Agonism and Allosterism at Receptors with Multiple Orthosteric Binding Sites.
    Gregory KJ; Giraldo J; Diao J; Christopoulos A; Leach K
    Mol Pharmacol; 2020 Jan; 97(1):35-45. PubMed ID: 31704718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allosteric modulation of G protein-coupled receptors: a pharmacological perspective.
    Keov P; Sexton PM; Christopoulos A
    Neuropharmacology; 2011 Jan; 60(1):24-35. PubMed ID: 20637785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The operational model of allosteric modulation of pharmacological agonism.
    Jakubík J; Randáková A; Chetverikov N; El-Fakahany EE; Doležal V
    Sci Rep; 2020 Sep; 10(1):14421. PubMed ID: 32879329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the novel positive allosteric modulator, LY2119620, at the muscarinic M(2) and M(4) receptors.
    Croy CH; Schober DA; Xiao H; Quets A; Christopoulos A; Felder CC
    Mol Pharmacol; 2014 Jul; 86(1):106-15. PubMed ID: 24807965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping Cannabinoid 1 Receptor Allosteric Site(s): Critical Molecular Determinant and Signaling Profile of GAT100, a Novel, Potent, and Irreversibly Binding Probe.
    Laprairie RB; Kulkarni AR; Kulkarni PM; Hurst DP; Lynch D; Reggio PH; Janero DR; Pertwee RG; Stevenson LA; Kelly ME; Denovan-Wright EM; Thakur GA
    ACS Chem Neurosci; 2016 Jun; 7(6):776-98. PubMed ID: 27046127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A conformation-equilibrium model captures ligand-ligand interactions and ligand-biased signalling by G-protein coupled receptors.
    Roth S; Bruggeman FJ
    FEBS J; 2014 Oct; 281(20):4659-71. PubMed ID: 25145284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of the Na+ ion binding site as a mechanism for positive allosteric modulation of the mu-opioid receptor.
    Livingston KE; Traynor JR
    Proc Natl Acad Sci U S A; 2014 Dec; 111(51):18369-74. PubMed ID: 25489080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying agonist activity at G protein-coupled receptors.
    Ehlert FJ; Suga H; Griffin MT
    J Vis Exp; 2011 Dec; (58):e3179. PubMed ID: 22231636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating metabotropic glutamate receptor 5 allosteric modulator cooperativity, affinity, and agonism: enriching structure-function studies and structure-activity relationships.
    Gregory KJ; Noetzel MJ; Rook JM; Vinson PN; Stauffer SR; Rodriguez AL; Emmitte KA; Zhou Y; Chun AC; Felts AS; Chauder BA; Lindsley CW; Niswender CM; Conn PJ
    Mol Pharmacol; 2012 Nov; 82(5):860-75. PubMed ID: 22863693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.