BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 24434802)

  • 1. Transcriptome-wide target profiling of RNA cytosine methyltransferases using the mechanism-based enrichment procedure Aza-IP.
    Khoddami V; Cairns BR
    Nat Protoc; 2014 Feb; 9(2):337-61. PubMed ID: 24434802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Approaches for Target Profiling of RNA Cytosine Methyltransferases.
    Khoddami V; Yerra A; Cairns BR
    Methods Enzymol; 2015; 560():273-96. PubMed ID: 26253975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of direct targets and modified bases of RNA cytosine methyltransferases.
    Khoddami V; Cairns BR
    Nat Biotechnol; 2013 May; 31(5):458-64. PubMed ID: 23604283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic crosslinking-based methods for enzyme-specified profiling of RNA ribonucleotide modifications.
    Hussain S
    Methods; 2019 Mar; 156():60-65. PubMed ID: 30308313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA cytosine methylation and methyltransferases mediate chromatin organization and 5-azacytidine response and resistance in leukaemia.
    Cheng JX; Chen L; Li Y; Cloe A; Yue M; Wei J; Watanabe KA; Shammo JM; Anastasi J; Shen QJ; Larson RA; He C; Le Beau MM; Vardiman JW
    Nat Commun; 2018 Mar; 9(1):1163. PubMed ID: 29563491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Division of labour: tRNA methylation by the NSun2 tRNA methyltransferases Trm4a and Trm4b in fission yeast.
    Müller M; Samel-Pommerencke A; Legrand C; Tuorto F; Lyko F; Ehrenhofer-Murray AE
    RNA Biol; 2019 Mar; 16(3):249-256. PubMed ID: 30646830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembly of protein-RNA complexes using natural RNA and mutant forms of an RNA cytosine methyltransferase.
    Redman KL
    Biomacromolecules; 2006 Dec; 7(12):3321-6. PubMed ID: 17154459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crosslinking Methods to Identify RNA Methyltransferase Targets In Vivo.
    Haag S; Kretschmer J; Sloan KE; Bohnsack MT
    Methods Mol Biol; 2017; 1562():269-281. PubMed ID: 28349467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. meRanTK: methylated RNA analysis ToolKit.
    Rieder D; Amort T; Kugler E; Lusser A; Trajanoski Z
    Bioinformatics; 2016 Mar; 32(5):782-5. PubMed ID: 26543174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of 5-azacytidine on E. coli cells with different DNA-methylases].
    Venozhinskis MT; Nesterenko VF; Kanopkaĭte SI; Bur'ianov IaI
    Biokhimiia; 1985 May; 50(5):749-54. PubMed ID: 2408684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AlkAniline-Seq: A Highly Sensitive and Specific Method for Simultaneous Mapping of 7-Methyl-guanosine (m
    Marchand V; Ayadi L; Bourguignon-Igel V; Helm M; Motorin Y
    Methods Mol Biol; 2021; 2298():77-95. PubMed ID: 34085239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NSUN6 is a human RNA methyltransferase that catalyzes formation of m5C72 in specific tRNAs.
    Haag S; Warda AS; Kretschmer J; Günnigmann MA; Höbartner C; Bohnsack MT
    RNA; 2015 Sep; 21(9):1532-43. PubMed ID: 26160102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BisAMP: A web-based pipeline for targeted RNA cytosine-5 methylation analysis.
    Bormann F; Tuorto F; Cirzi C; Lyko F; Legrand C
    Methods; 2019 Mar; 156():121-127. PubMed ID: 30366099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome-wide Analysis of Roles for tRNA Modifications in Translational Regulation.
    Chou HJ; Donnard E; Gustafsson HT; Garber M; Rando OJ
    Mol Cell; 2017 Dec; 68(5):978-992.e4. PubMed ID: 29198561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of cytosine methylation in RNA using bisulfite sequencing.
    Pollex T; Hanna K; Schaefer M
    Cold Spring Harb Protoc; 2010 Oct; 2010(10):pdb.prot5505. PubMed ID: 20889702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cysteine of sequence motif VI is essential for nucleophilic catalysis by yeast tRNA m5C methyltransferase.
    Walbott H; Husson C; Auxilien S; Golinelli-Pimpaneau B
    RNA; 2007 Jul; 13(7):967-73. PubMed ID: 17475914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential nuclear protein binding to 5-azacytosine-containing DNA as a potential mechanism for 5-aza-2'-deoxycytidine resistance.
    Michalowsky LA; Jones PA
    Mol Cell Biol; 1987 Sep; 7(9):3076-83. PubMed ID: 2444874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome-Wide Mapping 5-Methylcytosine by m
    Gu X; Liang Z
    Methods Mol Biol; 2019; 1933():389-394. PubMed ID: 30945199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of highly stable complexes between 5-azacytosine-substituted DNA and specific non-histone nuclear proteins. Implications for 5-azacytidine-mediated effects on DNA methylation and gene expression.
    Christman JK; Schneiderman N; Acs G
    J Biol Chem; 1985 Apr; 260(7):4059-68. PubMed ID: 2579944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Target recognition, RNA methylation activity and transcriptional regulation of the Dictyostelium discoideum Dnmt2-homologue (DnmA).
    Müller S; Windhof IM; Maximov V; Jurkowski T; Jeltsch A; Förstner KU; Sharma CM; Gräf R; Nellen W
    Nucleic Acids Res; 2013 Oct; 41(18):8615-27. PubMed ID: 23877245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.