BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

539 related articles for article (PubMed ID: 24434846)

  • 21. Human adipose tissue possesses a unique population of pluripotent stem cells with nontumorigenic and low telomerase activities: potential implications in regenerative medicine.
    Ogura F; Wakao S; Kuroda Y; Tsuchiyama K; Bagheri M; Heneidi S; Chazenbalk G; Aiba S; Dezawa M
    Stem Cells Dev; 2014 Apr; 23(7):717-28. PubMed ID: 24256547
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gene expression signatures defining fundamental biological processes in pluripotent, early, and late differentiated embryonic stem cells.
    Gaspar JA; Doss MX; Winkler J; Wagh V; Hescheler J; Kolde R; Vilo J; Schulz H; Sachinidis A
    Stem Cells Dev; 2012 Sep; 21(13):2471-84. PubMed ID: 22420508
    [TBL] [Abstract][Full Text] [Related]  

  • 23. VSELs Maintain their Pluripotency and Competence to Differentiate after Enhanced Ex Vivo Expansion.
    Lahlil R; Scrofani M; Barbet R; Tancredi C; Aries A; Hénon P
    Stem Cell Rev Rep; 2018 Aug; 14(4):510-524. PubMed ID: 29736843
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Large-scale expansion and exploitation of pluripotent stem cells for regenerative medicine purposes: beyond the T flask.
    Want AJ; Nienow AW; Hewitt CJ; Coopman K
    Regen Med; 2012 Jan; 7(1):71-84. PubMed ID: 22168499
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolation and culture of pig epiblast stem cells.
    Rodriguez A; Contreras DA; Alberio R
    Methods Mol Biol; 2013; 1074():97-110. PubMed ID: 23975808
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids.
    Freedman BS; Brooks CR; Lam AQ; Fu H; Morizane R; Agrawal V; Saad AF; Li MK; Hughes MR; Werff RV; Peters DT; Lu J; Baccei A; Siedlecki AM; Valerius MT; Musunuru K; McNagny KM; Steinman TI; Zhou J; Lerou PH; Bonventre JV
    Nat Commun; 2015 Oct; 6():8715. PubMed ID: 26493500
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Universal and Robust Integrated Platform for the Scalable Production of Human Cardiomyocytes From Pluripotent Stem Cells.
    Fonoudi H; Ansari H; Abbasalizadeh S; Larijani MR; Kiani S; Hashemizadeh S; Zarchi AS; Bosman A; Blue GM; Pahlavan S; Perry M; Orr Y; Mayorchak Y; Vandenberg J; Talkhabi M; Winlaw DS; Harvey RP; Aghdami N; Baharvand H
    Stem Cells Transl Med; 2015 Dec; 4(12):1482-94. PubMed ID: 26511653
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stem Cell Technology in Cardiac Regeneration: A Pluripotent Stem Cell Promise.
    Duelen R; Sampaolesi M
    EBioMedicine; 2017 Feb; 16():30-40. PubMed ID: 28169191
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Defining the nature of human pluripotent stem cell progeny.
    Patterson M; Chan DN; Ha I; Case D; Cui Y; Van Handel B; Mikkola HK; Lowry WE
    Cell Res; 2012 Jan; 22(1):178-93. PubMed ID: 21844894
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Induced pluripotent stem cells: reprogrammed without a trace.
    Nelson TJ; Terzic A
    Regen Med; 2009 May; 4(3):333-5. PubMed ID: 19438303
    [No Abstract]   [Full Text] [Related]  

  • 31. The advancement of human pluripotent stem cell-derived therapies into the clinic.
    Thies RS; Murry CE
    Development; 2015 Sep; 142(18):3077-84. PubMed ID: 26395136
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Production of human pluripotent stem cell therapeutics under defined xeno-free conditions: progress and challenges.
    Fan Y; Wu J; Ashok P; Hsiung M; Tzanakakis ES
    Stem Cell Rev Rep; 2015 Feb; 11(1):96-109. PubMed ID: 25077810
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Progression of Regenerative Medicine and its Impact on Therapy Translation.
    Jacques E; Suuronen EJ
    Clin Transl Sci; 2020 May; 13(3):440-450. PubMed ID: 31981408
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DNA and chromatin modification networks distinguish stem cell pluripotent ground states.
    Song J; Saha S; Gokulrangan G; Tesar PJ; Ewing RM
    Mol Cell Proteomics; 2012 Oct; 11(10):1036-47. PubMed ID: 22822199
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The 'sweet' spot of cellular pluripotency: protein glycosylation in human pluripotent stem cells and its applications in regenerative medicine.
    Wang YC; Lin V; Loring JF; Peterson SE
    Expert Opin Biol Ther; 2015 May; 15(5):679-87. PubMed ID: 25736263
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CSCs and pluripotent/multipotent stem cells.
    Lab Invest; 2017 Oct; 97(10):1124-1125. PubMed ID: 28961234
    [No Abstract]   [Full Text] [Related]  

  • 37. Characterization of companion animal pluripotent stem cells.
    Paterson YZ; Kafarnik C; Guest DJ
    Cytometry A; 2018 Jan; 93(1):137-148. PubMed ID: 28678404
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Human pituitary development and application of iPSCs for pituitary disease.
    Matsumoto R; Takahashi Y
    Cell Mol Life Sci; 2021 Mar; 78(5):2069-2079. PubMed ID: 33206204
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unique properties of a subset of human pluripotent stem cells with high capacity for self-renewal.
    Lau KX; Mason EA; Kie J; De Souza DP; Kloehn J; Tull D; McConville MJ; Keniry A; Beck T; Blewitt ME; Ritchie ME; Naik SH; Zalcenstein D; Korn O; Su S; Romero IG; Spruce C; Baker CL; McGarr TC; Wells CA; Pera MF
    Nat Commun; 2020 May; 11(1):2420. PubMed ID: 32415101
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An alternative pluripotent state confers interspecies chimaeric competency.
    Wu J; Okamura D; Li M; Suzuki K; Luo C; Ma L; He Y; Li Z; Benner C; Tamura I; Krause MN; Nery JR; Du T; Zhang Z; Hishida T; Takahashi Y; Aizawa E; Kim NY; Lajara J; Guillen P; Campistol JM; Esteban CR; Ross PJ; Saghatelian A; Ren B; Ecker JR; Izpisua Belmonte JC
    Nature; 2015 May; 521(7552):316-21. PubMed ID: 25945737
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.