These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 24434878)

  • 21. A Novel Damage Indicator Based on the Electromechanical Impedance Principle for Structural Damage Identification.
    Zhou P; Wang D; Zhu H
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29986544
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of Multiplexed FBG and PZT Impedance Sensors for Health Monitoring of Rocks.
    Yang Y; Annamdas VG; Wang C; Zhou Y
    Sensors (Basel); 2008 Jan; 8(1):271-289. PubMed ID: 27879708
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Piezoelectric Sensor-Embedded Smart Rock for Damage Monitoring in a Prestressed Anchorage Zone.
    Pham QQ; Dang NL; Kim JT
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33430204
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Health monitoring of bacterial concrete structure under dynamic loading using electro-mechanical impedance technique: a numerical approach.
    Maurya KK; Rawat A; Shanker R
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):25382-25401. PubMed ID: 35836050
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural Integrity Assessment of Composites Plates with Embedded PZT Transducers for Structural Health Monitoring.
    Feng T; Aliabadi MHF
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683740
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A PZT-Based Electromechanical Impedance Method for Monitoring the Soil Freeze⁻Thaw Process.
    Zhang J; Zhang C; Xiao J; Jiang J
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30841530
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Damage Identification in Plate Structures Using Sparse Regularization Based Electromechanical Impedance Technique.
    Fan X; Li J
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33321785
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting concrete strength early age using a combination of machine learning and electromechanical impedance with nano-enhanced sensors.
    Ju H; Xing L; Ali AH; El-Arab IE; Elshekh AEA; Abbas M; Abdullah N; Elattar S; Hashmi A; Ali E; Assilzadeh H
    Environ Res; 2024 Oct; 258():119248. PubMed ID: 38823615
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Health Monitoring of Metallic Structures with Electromechanical Impedance and Piezoelectric Sensors.
    Zhu J; Wang Y; Qing X
    Nanomaterials (Basel); 2019 Sep; 9(9):. PubMed ID: 31492015
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sensitivity of Piezoelectric-Based Smart Interfaces to Structural Damage in Bolted Connections.
    Huynh TC; Ho DD; Dang NL; Kim AJ
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31450813
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensor Fault Diagnosis for Impedance Monitoring Using a Piezoelectric-Based Smart Interface Technique.
    Huynh TC; Nguyen TD; Ho DD; Dang NL; Kim JT
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31963252
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Low-Cost Piezoelectric Sensors for Time Domain Load Monitoring of Metallic Structures During Operational and Maintenance Processes.
    Perez-Alfaro I; Gil-Hernandez D; Muñoz-Navascues O; Casbas-Gimenez J; Sanchez-Catalan JC; Murillo N
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32156027
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A study of concrete slab damage detection based on the electromechanical impedance method.
    Hu X; Zhu H; Wang D
    Sensors (Basel); 2014 Oct; 14(10):19897-909. PubMed ID: 25341438
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrasonic Sensing and Actuation in Laminate Structures Using Bondline-Embedded d35 Piezoelectric Sensors.
    Altammar H; Dhingra A; Salowitz N
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30423892
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiple Damage Detection in PZT Sensor Using Dual Point Contact Method.
    Bhattacharya S; Yadav N; Ahmad A; Melandsø F; Habib A
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501870
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication and characterization of thick-film piezoelectric lead zirconate titanate ceramic resonators by tape-casting.
    Qin L; Sun Y; Wang QM; Zhong Y; Ou M; Jiang Z; Tian W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Dec; 59(12):2803-12. PubMed ID: 23221230
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A reusable PZT transducer for monitoring initial hydration and structural health of concrete.
    Yang Y; Divsholi BS; Soh CK
    Sensors (Basel); 2010; 10(5):5193-208. PubMed ID: 22399929
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A time-frequency analysis of the correlation between the electromechanical impedance (EMI) of surface bonded piezoelectric wafer active transducers (PWaTs) and the pitch-catch signal.
    Huang H
    Ultrasonics; 2021 Aug; 115():106462. PubMed ID: 34049185
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Looseness Monitoring of Bolted Spherical Joint Connection Using Electro-Mechanical Impedance Technique and BP Neural Networks.
    Xu J; Dong J; Li H; Zhang C; Ho SC
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31013647
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimum PZT Patch Size for Corrosion Detection in Reinforced Concrete Using the Electromechanical Impedance Technique.
    Hire JH; Hosseini S; Moradi F
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34198764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.