These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 24434902)

  • 1. Initial stages of Cu3Au(111) oxidation: oxygen induced Cu segregation and the protective Au layer profile.
    Tsuda Y; Oka K; Makino T; Okada M; Diño WA; Hashinokuchi M; Yoshigoe A; Teraoka Y; Kasai H
    Phys Chem Chem Phys; 2014 Feb; 16(8):3815-22. PubMed ID: 24434902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of alloying and segregation for the reactivity and diffusion of oxygen on Cu3Au(111).
    Oka K; Tsuda Y; Makino T; Okada M; Hashinokuchi M; Yoshigoe A; Teraoka Y; Kasai H
    Phys Chem Chem Phys; 2014 Sep; 16(36):19702-11. PubMed ID: 25116940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental and Theoretical Studies on Oxidation of Cu-Au Alloy Surfaces: Effect of Bulk Au Concentration.
    Okada M; Tsuda Y; Oka K; Kojima K; Diño WA; Yoshigoe A; Kasai H
    Sci Rep; 2016 Aug; 6():31101. PubMed ID: 27516137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. O2 induced Cu surface segregation in Au-Cu alloys studied by angle resolved XPS and DFT modelling.
    Völker E; Williams FJ; Calvo EJ; Jacob T; Schiffrin DJ
    Phys Chem Chem Phys; 2012 May; 14(20):7448-55. PubMed ID: 22514022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of step geometry in copper oxidation by hyperthermal O2 molecular beam: Cu(511) vs Cu(410).
    Okada M; Vattuone L; Rocca M; Teraoka Y
    J Chem Phys; 2012 Mar; 136(9):094704. PubMed ID: 22401465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The temperature dependence of Cu2O formation on a Cu(110) surface with an energetic O2 molecular beam.
    Hashinokuchi M; Yoshigoe A; Teraoka Y; Okada M
    J Phys Condens Matter; 2012 Oct; 24(39):395007. PubMed ID: 22941928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ synchrotron radiation photoelectron spectroscopy study of the oxidation of the Ge(100)-2 × 1 surface by supersonic molecular oxygen beams.
    Yoshigoe A; Teraoka Y; Okada R; Yamada Y; Sasaki M
    J Chem Phys; 2014 Nov; 141(17):174708. PubMed ID: 25381538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling O coverage and stability by alloying Au and Ag.
    Montemore MM; Cubuk ED; Klobas JE; Schmid M; Madix RJ; Friend CM; Kaxiras E
    Phys Chem Chem Phys; 2016 Sep; 18(38):26844-26853. PubMed ID: 27722678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water-enhanced low-temperature CO oxidation and isotope effects on atomic oxygen-covered Au(111).
    Ojifinni RA; Froemming NS; Gong J; Pan M; Kim TS; White JM; Henkelman G; Mullins CB
    J Am Chem Soc; 2008 May; 130(21):6801-12. PubMed ID: 18444649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with Au1 and Au2: the importance of spin conservation.
    Chrétien S; Metiu H
    J Chem Phys; 2008 Aug; 129(7):074705. PubMed ID: 19044790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic hindrance during the surface oxidation of Cu(100)-c(10x2)-Ag.
    Lahtonen K; Lampimäki M; Hirsimäki M; Valden M
    J Chem Phys; 2008 Nov; 129(19):194707. PubMed ID: 19026081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skeletal Ru/Cu catalysts prepared from crystalline and quasicrystalline ternary alloy precursors: characterization by X-ray absorption spectroscopy and CO oxidation.
    Highfield J; Liu T; Loo YS; Grushko B; Borgna A
    Phys Chem Chem Phys; 2009 Feb; 11(8):1196-208. PubMed ID: 19209363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of oxygen with TiN(001): N<-->O exchange and oxidation process.
    Graciani J; Fdez Sanz J; Asaki T; Nakamura K; Rodriguez JA
    J Chem Phys; 2007 Jun; 126(24):244713. PubMed ID: 17614583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning the surface composition of Cu
    Li C; Liu Q; Boscoboinik JA; Zhou G
    Phys Chem Chem Phys; 2020 Feb; 22(6):3379-3389. PubMed ID: 31976989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of oxygen adsorption and initial oxidation on Cu(110) by hyperthermal oxygen molecular beams.
    Moritani K; Okada M; Teraoka Y; Yoshigoe A; Kasai T
    J Phys Chem A; 2009 Dec; 113(52):15217-22. PubMed ID: 19810738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient CO oxidation at low temperature on Au(111).
    Min BK; Alemozafar AR; Pinnaduwage D; Deng X; Friend CM
    J Phys Chem B; 2006 Oct; 110(40):19833-8. PubMed ID: 17020368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The onset of sub-surface oxidation induced by defects in a chemisorbed oxygen layer.
    Li J; Li L; Zhou G
    J Chem Phys; 2015 Feb; 142(8):084701. PubMed ID: 25725745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculations of oxide formation on low-index Cu surfaces.
    Lian X; Xiao P; Yang SC; Liu R; Henkelman G
    J Chem Phys; 2016 Jul; 145(4):044711. PubMed ID: 27475390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benzene adsorption on binary Pt3M alloys and surface alloys: a DFT study.
    Sabbe MK; Laín L; Reyniers MF; Marin GB
    Phys Chem Chem Phys; 2013 Aug; 15(29):12197-214. PubMed ID: 23811813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen adsorption-induced nanostructures and island formation on Cu{100}: Bridging the gap between the formation of surface confined oxygen chemisorption layer and oxide formation.
    Lahtonen K; Hirsimäki M; Lampimäki M; Valden M
    J Chem Phys; 2008 Sep; 129(12):124703. PubMed ID: 19045044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.