These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 24434980)

  • 1. Comparison of two standard odor intensity evaluation methods for odor problems in air or water.
    Curren J; Snyder CL; Abraham S; Suffet IH
    Water Sci Technol; 2014; 69(1):142-6. PubMed ID: 24434980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing hexanal as an odor reference standard for sensory analysis of drinking water.
    Omür-Ozbek P; Dietrich AM
    Water Res; 2008 May; 42(10-11):2598-604. PubMed ID: 18280533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and quantification of nuisance odors at a trash transfer station.
    Curren J; Hallis SA; Snyder CCL; Suffet IMH
    Waste Manag; 2016 Dec; 58():52-61. PubMed ID: 27692531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of bioscrubber and biofilter technologies treating wastewater foul air by a new approach of using odor character, odor intensity, and chemical analyses.
    Vitko TG; Cowden S; Suffet IHM
    Water Res; 2022 Jul; 220():118691. PubMed ID: 35691191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relevance of n-butanol as a reference gas for odorants and complex odors.
    Feilberg A; Hansen MJ; Pontoppidan O; Oxbøl A; Jonassen K
    Water Sci Technol; 2018 Mar; 77(5-6):1751-1756. PubMed ID: 29595178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative method to determine the regional drinking water odorant regulation goals based on odor sensitivity distribution: illustrated using 2-MIB.
    Yu J; An W; Cao N; Yang M; Gu J; Zhang D; Lu N
    J Environ Sci (China); 2014 Jul; 26(7):1389-94. PubMed ID: 25079986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ambient odour testing of concentrated animal feeding operations using field and laboratory olfactometers.
    Newby BD; McGinley MA
    Water Sci Technol; 2004; 50(4):109-14. PubMed ID: 15484749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new method for evaluating nuisance of odorants by chemical and sensory analyses and the assessing of masked odors by olfactometry.
    Zhou Y; Vitko TG; Suffet IHM
    Sci Total Environ; 2023 Mar; 862():160905. PubMed ID: 36521625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring of odor compounds produced by solid waste treatment plants with diffusive samplers.
    Bruno P; Caselli M; de Gennaro G; Solito M; Tutino M
    Waste Manag; 2007; 27(4):539-44. PubMed ID: 16713237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The attribute rating test for sensory analysis.
    Dietrich AM; Whelton AJ; Hoehn RC; Anderson R; Wille M
    Water Sci Technol; 2004; 49(9):61-7. PubMed ID: 15237608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An evaluation of masking nuisance odors from a source by chemical and sensory analyses.
    Suffet IH; Decottignies V; Zhou Y; Bian Y; Vitko TG
    Water Environ Res; 2023 Jul; 95(7):e10901. PubMed ID: 37271803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Case study of odor and indoor air quality assessment in the dewatering building at the Stickney Water Reclamation Plant.
    Sharma M; O'Connell S; Garelli B; Sattayatewa C; Moschandreas D; Pagilla K
    Water Sci Technol; 2012; 65(4):773-9. PubMed ID: 22277239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the odor threshold concentrations of chlorobrominated anisoles in water.
    Diaz A; Fabrellas C; Ventura F; Galceran MT
    J Agric Food Chem; 2005 Jan; 53(2):383-7. PubMed ID: 15656676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and evaluation of fishy odorants produced by four algae separated from drinking water source during low temperature period: Insight into odor characteristics and odor contribution of fishy odor-producing algae.
    Guo Q; Chen X; Yang K; Yu J; Liang F; Wang C; Yang B; Chen T; Li Z; Li X; Ding C
    Chemosphere; 2023 May; 324():138328. PubMed ID: 36889477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding odorants associated with compost, biomass facilities, and the land application of biosolids.
    Rosenfeld PE; Suffet IH
    Water Sci Technol; 2004; 49(9):193-9. PubMed ID: 15237625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Difference in the odor concentrations measured by the triangle odor bag method and dynamic olfactometry.
    Ueno H; Amano S; Merecka B; Kośmider J
    Water Sci Technol; 2009; 59(7):1339-42. PubMed ID: 19380999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A practical framework using odor survey data to prioritize nuisance odors.
    Burlingame GA
    Water Sci Technol; 2009; 59(3):595-602. PubMed ID: 19214015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using olfactometry to measure intensity and threshold dilution ratio for evaluating swine odor.
    Chen Y; Bundy DS; Hoff SJ
    J Air Waste Manag Assoc; 1999 Jul; 49(7):847-53. PubMed ID: 10436766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between intensity, concentration, and temperature for drinking water odorants.
    Whelton AJ; Dietrich AM
    Water Res; 2004 Mar; 38(6):1604-14. PubMed ID: 15016538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensory evaluation of the odors produced during bromophenol formation using a multi-level statistical model.
    Al-Samarrai H; Matud J; Wiesenthal K; Atiyah P; Bruchet A; Suffet IH
    Water Sci Technol; 2004; 49(9):241-8. PubMed ID: 15237631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.