These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 24435061)
1. Global architecture of the F-actin cytoskeleton regulates cell shape-dependent endothelial mechanotransduction. Shao Y; Mann JM; Chen W; Fu J Integr Biol (Camb); 2014 Mar; 6(3):300-11. PubMed ID: 24435061 [TBL] [Abstract][Full Text] [Related]
2. Uniaxial cell stretching device for live-cell imaging of mechanosensitive cellular functions. Shao Y; Tan X; Novitski R; Muqaddam M; List P; Williamson L; Fu J; Liu AP Rev Sci Instrum; 2013 Nov; 84(11):114304. PubMed ID: 24289415 [TBL] [Abstract][Full Text] [Related]
3. Cyclic tensile strain controls cell shape and directs actin stress fiber formation and focal adhesion alignment in spreading cells. Greiner AM; Chen H; Spatz JP; Kemkemer R PLoS One; 2013; 8(10):e77328. PubMed ID: 24204809 [TBL] [Abstract][Full Text] [Related]
4. Temporal responses of human endothelial and smooth muscle cells exposed to uniaxial cyclic tensile strain. Greiner AM; Biela SA; Chen H; Spatz JP; Kemkemer R Exp Biol Med (Maywood); 2015 Oct; 240(10):1298-309. PubMed ID: 25687334 [TBL] [Abstract][Full Text] [Related]
5. Shear-induced force transmission in a multicomponent, multicell model of the endothelium. Dabagh M; Jalali P; Butler PJ; Tarbell JM J R Soc Interface; 2014 Sep; 11(98):20140431. PubMed ID: 24966239 [TBL] [Abstract][Full Text] [Related]
6. Elastomeric microposts integrated into microfluidics for flow-mediated endothelial mechanotransduction analysis. Lam RH; Sun Y; Chen W; Fu J Lab Chip; 2012 Apr; 12(10):1865-73. PubMed ID: 22437210 [TBL] [Abstract][Full Text] [Related]
7. A Shearing-Stretching Device That Can Apply Physiological Fluid Shear Stress and Cyclic Stretch Concurrently to Endothelial Cells. Meza D; Abejar L; Rubenstein DA; Yin W J Biomech Eng; 2016 Mar; 138(3):4032550. PubMed ID: 26810848 [TBL] [Abstract][Full Text] [Related]
8. Lights, camera, actin! The cytoskeleton takes center stage in mechanotransduction. Focus on "Mapping the dynamics of shear stress-induced structural changes in endothelial cells.". Rizzo V Am J Physiol Cell Physiol; 2007 Dec; 293(6):C1771-2. PubMed ID: 17928535 [No Abstract] [Full Text] [Related]
9. In silico CDM model sheds light on force transmission in cell from focal adhesions to nucleus. Milan JL; Manifacier I; Beussman KM; Han SJ; Sniadecki NJ; About I; Chabrand P J Biomech; 2016 Sep; 49(13):2625-2634. PubMed ID: 27298154 [TBL] [Abstract][Full Text] [Related]
11. Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement. Yoshigi M; Hoffman LM; Jensen CC; Yost HJ; Beckerle MC J Cell Biol; 2005 Oct; 171(2):209-15. PubMed ID: 16247023 [TBL] [Abstract][Full Text] [Related]
12. Mechanotransduction at focal adhesions: integrating cytoskeletal mechanics in migrating cells. Kuo JC J Cell Mol Med; 2013 Jun; 17(6):704-12. PubMed ID: 23551528 [TBL] [Abstract][Full Text] [Related]
13. Focal adhesion and actin orientation regulated by cellular geometry determine stem cell differentiation via mechanotransduction. Wang X; Yang Y; Wang Y; Lu C; Hu X; Kawazoe N; Yang Y; Chen G Acta Biomater; 2024 Jul; 182():81-92. PubMed ID: 38734287 [TBL] [Abstract][Full Text] [Related]
14. Mechanotransduction in endothelial cell migration. Li S; Huang NF; Hsu S J Cell Biochem; 2005 Dec; 96(6):1110-26. PubMed ID: 16167340 [TBL] [Abstract][Full Text] [Related]
15. VASP, zyxin and TES are tension-dependent members of Focal Adherens Junctions independent of the α-catenin-vinculin module. Oldenburg J; van der Krogt G; Twiss F; Bongaarts A; Habani Y; Slotman JA; Houtsmuller A; Huveneers S; de Rooij J Sci Rep; 2015 Nov; 5():17225. PubMed ID: 26611125 [TBL] [Abstract][Full Text] [Related]
16. The regulation of dynamic mechanical coupling between actin cytoskeleton and nucleus by matrix geometry. Li Q; Kumar A; Makhija E; Shivashankar GV Biomaterials; 2014 Jan; 35(3):961-9. PubMed ID: 24183171 [TBL] [Abstract][Full Text] [Related]
17. Vascular endothelial cell membranes differentiate between stretch and shear stress through transitions in their lipid phases. Yamamoto K; Ando J Am J Physiol Heart Circ Physiol; 2015 Oct; 309(7):H1178-85. PubMed ID: 26297225 [TBL] [Abstract][Full Text] [Related]
18. A contractile and counterbalancing adhesion system controls the 3D shape of crawling cells. Burnette DT; Shao L; Ott C; Pasapera AM; Fischer RS; Baird MA; Der Loughian C; Delanoe-Ayari H; Paszek MJ; Davidson MW; Betzig E; Lippincott-Schwartz J J Cell Biol; 2014 Apr; 205(1):83-96. PubMed ID: 24711500 [TBL] [Abstract][Full Text] [Related]
19. Fluidization, resolidification, and reorientation of the endothelial cell in response to slow tidal stretches. Krishnan R; Canovic EP; Iordan AL; Rajendran K; Manomohan G; Pirentis AP; Smith ML; Butler JP; Fredberg JJ; Stamenovic D Am J Physiol Cell Physiol; 2012 Aug; 303(4):C368-75. PubMed ID: 22700796 [TBL] [Abstract][Full Text] [Related]
20. Vinculin associates with endothelial VE-cadherin junctions to control force-dependent remodeling. Huveneers S; Oldenburg J; Spanjaard E; van der Krogt G; Grigoriev I; Akhmanova A; Rehmann H; de Rooij J J Cell Biol; 2012 Mar; 196(5):641-52. PubMed ID: 22391038 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]