These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 2443535)

  • 1. The effects of quinine on the calcium and magnesium content of the sarcoplasmic reticulum and the temperature-dependence of quinine contractures.
    Yoshioka T; Somlyo AP
    J Muscle Res Cell Motil; 1987 Aug; 8(4):322-8. PubMed ID: 2443535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron probe X-ray microanalysis of post-tetanic Ca2+ and Mg2+ movements across the sarcoplasmic reticulum in situ.
    Somlyo AV; McClellan G; Gonzalez-Serratos H; Somlyo AP
    J Biol Chem; 1985 Jun; 260(11):6801-7. PubMed ID: 3158652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional characterization of junctional terminal cisternae from mammalian fast skeletal muscle sarcoplasmic reticulum.
    Chu A; Volpe P; Costello B; Fleischer S
    Biochemistry; 1986 Dec; 25(25):8315-24. PubMed ID: 2434126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle: an electron-probe study.
    Somlyo AV; Gonzalez-Serratos HG; Shuman H; McClellan G; Somlyo AP
    J Cell Biol; 1981 Sep; 90(3):577-94. PubMed ID: 6974735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of contracture on cooling of caffeine-treated frog skeletal muscle fibres.
    Horiuti K
    J Physiol; 1988 Apr; 398():131-48. PubMed ID: 3392668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of longitudinal tubules of sarcoplasmic reticulum from fast skeletal muscle.
    Chu A; Saito A; Fleischer S
    Arch Biochem Biophys; 1987 Oct; 258(1):13-23. PubMed ID: 2444161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium and magnesium contents and volume of the terminal cisternae in caffeine-treated skeletal muscle.
    Yoshioka T; Somlyo AP
    J Cell Biol; 1984 Aug; 99(2):558-68. PubMed ID: 6611338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced Ca(2+)-induced Ca2+ release from skeletal muscle sarcoplasmic reticulum at low pH.
    Williams JH; Ward CW
    Can J Physiol Pharmacol; 1992 Jun; 70(6):926-30. PubMed ID: 1423036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ruthenium red and magnesium ion partially inhibit silver ion-induced release of calcium from sarcoplasmic reticulum of frog skeletal muscles.
    Oba T; Iwama H; Aoki T
    Jpn J Physiol; 1989; 39(2):241-54. PubMed ID: 2474685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium uptake and release modulated by counter-ion conductances in the sarcoplasmic reticulum of skeletal muscle.
    Fink RH; Veigel C
    Acta Physiol Scand; 1996 Mar; 156(3):387-96. PubMed ID: 8729699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A thermal transition of passive calcium efflux in fragmented sarcoplasmic reticulum.
    Millman MS
    Membr Biochem; 1980; 3(4):271-90. PubMed ID: 7219191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Mg2+ concentration on Ca2+ uptake kinetics and structure of the sarcoplasmic reticulum membrane.
    Asturias FJ; Blasie JK
    Biophys J; 1989 Apr; 55(4):739-53. PubMed ID: 2524225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mg2+ dependence of halothane-induced Ca2+ release from the sarcoplasmic reticulum in rat skeletal muscle.
    Duke AM; Hopkins PM; Steele DS
    J Physiol; 2003 Sep; 551(Pt 2):447-54. PubMed ID: 12909676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of low myoplasmic Mg2+ on calcium binding by parvalbumin and calcium uptake by the sarcoplasmic reticulum in frog skeletal muscle.
    Jacquemond V; Schneider MF
    J Gen Physiol; 1992 Jul; 100(1):115-35. PubMed ID: 1512554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation induced by phthalocyanine dyes causes rapid calcium release from sarcoplasmic reticulum vesicles.
    Abramson JJ; Cronin JR; Salama G
    Arch Biochem Biophys; 1988 Jun; 263(2):245-55. PubMed ID: 2454077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular milieu changes associated with hypoxia impair sarcoplasmic reticulum Ca2+ transport in cardiac muscle.
    Zhu Y; Nosek TM
    Am J Physiol; 1991 Sep; 261(3 Pt 2):H620-6. PubMed ID: 1887912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of valinomycin on ion movements across the sarcoplasmic reticulum in frog muscle.
    Kitazawa T; Somlyo AP; Somlyo AV
    J Physiol; 1984 May; 350():253-68. PubMed ID: 6611398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms underlying phosphate-induced failure of Ca2+ release in single skinned skeletal muscle fibres of the rat.
    Posterino GS; Fryer MW
    J Physiol; 1998 Oct; 512 ( Pt 1)(Pt 1):97-108. PubMed ID: 9729620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnesium effects on activation of skinned fibers from striated muscle.
    Stephenson EW
    Fed Proc; 1981 Oct; 40(12):2662-6. PubMed ID: 6269902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulphydryl reagents trigger Ca2+ release from the sarcoplasmic reticulum of skinned rabbit psoas fibres.
    Salama G; Abramson JJ; Pike GK
    J Physiol; 1992 Aug; 454():389-420. PubMed ID: 1335505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.