These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Expression of escherichia coli otsA in a Saccharomyces cerevisiae tps1 mutant restores trehalose 6-phosphate levels and partly restores growth and fermentation with glucose and control of glucose influx into glycolysis. Bonini BM; Van Vaeck C; Larsson C; Gustafsson L; Ma P; Winderickx J; Van Dijck P; Thevelein JM Biochem J; 2000 Aug; 350 Pt 1(Pt 1):261-8. PubMed ID: 10926852 [TBL] [Abstract][Full Text] [Related]
5. Selection for rapid uptake of scarce or fluctuating resource explains vulnerability of glycolysis to imbalance. Janulevicius A; van Doorn GS PLoS Comput Biol; 2021 Jan; 17(1):e1008547. PubMed ID: 33465070 [TBL] [Abstract][Full Text] [Related]
6. 'Domino' systems biology and the 'A' of ATP. Verma M; Zakhartsev M; Reuss M; Westerhoff HV Biochim Biophys Acta; 2013 Jan; 1827(1):19-29. PubMed ID: 23031542 [TBL] [Abstract][Full Text] [Related]
7. Lipophilic Cations Rescue the Growth of Yeast under the Conditions of Glycolysis Overflow. Sokolov SS; Smirnova EA; Markova OV; Kireeva NA; Kirsanov RS; Khailova LS; Knorre DA; Severin FF Biomolecules; 2020 Sep; 10(9):. PubMed ID: 32962296 [TBL] [Abstract][Full Text] [Related]
8. Metabolic response to MMS-mediated DNA damage in Saccharomyces cerevisiae is dependent on the glucose concentration in the medium. Kitanovic A; Walther T; Loret MO; Holzwarth J; Kitanovic I; Bonowski F; Van Bui N; Francois JM; Wölfl S FEMS Yeast Res; 2009 Jun; 9(4):535-51. PubMed ID: 19341380 [TBL] [Abstract][Full Text] [Related]
9. The importance of ATP as a regulator of glycolytic flux in Saccharomyces cerevisiae. Larsson C; Påhlman IL; Gustafsson L Yeast; 2000 Jun; 16(9):797-809. PubMed ID: 10861904 [TBL] [Abstract][Full Text] [Related]
10. Understanding start-up problems in yeast glycolysis. Overal GB; Teusink B; Bruggeman FJ; Hulshof J; Planqué R Math Biosci; 2018 May; 299():117-126. PubMed ID: 29550298 [TBL] [Abstract][Full Text] [Related]
11. Sustained oscillations in free-energy state and hexose phosphates in yeast. Richard P; Teusink B; Hemker MB; Van Dam K; Westerhoff HV Yeast; 1996 Jun; 12(8):731-40. PubMed ID: 8813760 [TBL] [Abstract][Full Text] [Related]
13. Metabolic analysis of the synthesis of high levels of intracellular human SOD in Saccharomyces cerevisiae rhSOD 2060 411 SGA122. Gonzalez R; Andrews BA; Molitor J; Asenjo JA Biotechnol Bioeng; 2003 Apr; 82(2):152-69. PubMed ID: 12584757 [TBL] [Abstract][Full Text] [Related]
15. During the initiation of fermentation overexpression of hexokinase PII in yeast transiently causes a similar deregulation of glycolysis as deletion of Tps1. Ernandes JR; De Meirsman C; Rolland F; Winderickx J; de Winde J; Brandão RL; Thevelein JM Yeast; 1998 Feb; 14(3):255-69. PubMed ID: 9580251 [TBL] [Abstract][Full Text] [Related]
17. Schemes of flux control in a model of Saccharomyces cerevisiae glycolysis. Pritchard L; Kell DB Eur J Biochem; 2002 Aug; 269(16):3894-904. PubMed ID: 12180966 [TBL] [Abstract][Full Text] [Related]
18. Cellobiose Consumption Uncouples Extracellular Glucose Sensing and Glucose Metabolism in Chomvong K; Benjamin DI; Nomura DK; Cate JHD mBio; 2017 Aug; 8(4):. PubMed ID: 28790206 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of glycolysis by 2-deoxygalactose in Saccharomyces cerevisiae. Lagunas R; Moreno E Yeast; 1992 Feb; 8(2):107-15. PubMed ID: 1532877 [TBL] [Abstract][Full Text] [Related]
20. An Improved ATP FRET Sensor For Yeast Shows Heterogeneity During Nutrient Transitions. Botman D; van Heerden JH; Teusink B ACS Sens; 2020 Mar; 5(3):814-822. PubMed ID: 32077276 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]