These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 24436247)

  • 1. A longitudinal study assessing lens thickness changes in the eye of the growing beagle using ultrasound scanning: relevance to age of dogs in regulatory toxicology studies.
    Maynard J; Sykes A; Powell H; Healing G; Scott M; Holmes A; Ricketts SA; Stewart J; Davis S
    J Appl Toxicol; 2014 Dec; 34(12):1368-72. PubMed ID: 24436247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of acoustic wave propagation velocities in the ocular lens and vitreous tissues of pigs, dogs, and rabbits.
    Görig C; Varghese T; Stiles T; van den Broek J; Zagzebski JA; Murphy CJ
    Am J Vet Res; 2006 Feb; 67(2):288-95. PubMed ID: 16454635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of age in dogs and cats by use of changes in lens reflections and transparency.
    Tobias G; Tobias TA; Abood SK; Hamor RE; Ballam JM
    Am J Vet Res; 1998 Aug; 59(8):945-50. PubMed ID: 9706196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of age on the morphology and optical quality of the avian crystalline lens.
    Priolo S; Sivak JG; Kuszak JR
    Exp Eye Res; 1999 Dec; 69(6):629-40. PubMed ID: 10620392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth of the human eye lens.
    Augusteyn RC
    Mol Vis; 2007 Feb; 13():252-7. PubMed ID: 17356512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of high-dose verapamil on beagle lens proteins (chronic toxicity test).
    Bours J; Hockwin O; Schnitzlein W; Löhnert G
    Ophthalmic Res; 1986; 18(4):215-23. PubMed ID: 3774287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of toxicological agents on the optics and mitochondria of the lens and the mitochondria of the corneal epithelium.
    Bantseev V; McCanna DJ; Driot JY; Sivak JG
    Semin Cell Dev Biol; 2008 Apr; 19(2):150-9. PubMed ID: 17936038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fibre cell organization in crystalline lenses.
    Kuszak JR; Zoltoski RK; Sivertson C
    Exp Eye Res; 2004 Mar; 78(3):673-87. PubMed ID: 15106947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variability in weight and histological appearance of the prostate of beagle dogs used in toxicology studies.
    Dorso L; Chanut F; Howroyd P; Burnett R
    Toxicol Pathol; 2008 Dec; 36(7):917-25. PubMed ID: 18827073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth of the lens: in vitro observations.
    Augusteyn RC
    Clin Exp Optom; 2008 May; 91(3):226-39. PubMed ID: 18331361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple description of age-related changes in crystalline lens thickness.
    García-Domene MC; Díez-Ajenjo MA; Gracia V; Felipe A; Artigas JM
    Eur J Ophthalmol; 2011; 21(5):597-603. PubMed ID: 21240861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term lens organ culture system to determine age-related effects of UV irradiation on the eye lens.
    Azzam N; Dovrat A
    Exp Eye Res; 2004 Dec; 79(6):903-11. PubMed ID: 15642328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of age and genetic growth rate on the crystallin composition of the chick lens.
    Patek C; Head M; Clayton R
    Int J Dev Biol; 1994 Dec; 38(4):717-24. PubMed ID: 7779693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation.
    Kasthurirangan S; Markwell EL; Atchison DA; Pope JM
    Invest Ophthalmol Vis Sci; 2008 Jun; 49(6):2531-40. PubMed ID: 18408189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the relationship between rabbit age and lens dry weight: improved determination of the age of rabbits in the wild.
    Augusteyn RC
    Mol Vis; 2007 Oct; 13():2030-4. PubMed ID: 17982428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus.
    Koretz JF; Cook CA; Kaufman PL
    Invest Ophthalmol Vis Sci; 1997 Mar; 38(3):569-78. PubMed ID: 9071209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphology of the normal human lens.
    Taylor VL; al-Ghoul KJ; Lane CW; Davis VA; Kuszak JR; Costello MJ
    Invest Ophthalmol Vis Sci; 1996 Jun; 37(7):1396-410. PubMed ID: 8641842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Normal development of refractive state and ocular dimensions in guinea pigs.
    Zhou X; Qu J; Xie R; Wang R; Jiang L; Zhao H; Wen J; Lu F
    Vision Res; 2006 Sep; 46(18):2815-23. PubMed ID: 16723148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodium cyanate-induced ocular lesions in the beagle.
    Kern HL; Bellhorn RW; Peterson CM
    J Pharmacol Exp Ther; 1977 Jan; 200(1):10-6. PubMed ID: 401882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of light deprivation on the mouse lens.
    Augusteyn RC
    Exp Eye Res; 1998 May; 66(5):669-74. PubMed ID: 9628812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.