These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 24436247)

  • 21. Temporal and spatial growth patterns in the normal and cataractous human lens.
    Kwok LS; Coroneo MT
    Exp Eye Res; 2000 Sep; 71(3):317-22. PubMed ID: 10973740
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human lens weights with increasing age.
    Mohamed A; Augusteyn RC
    Mol Vis; 2018; 24():867-xxx. PubMed ID: 30820139
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Normalization of lens protein kinase Cgamma in galactosemic dogs by a novel aldose reductase inhibitor.
    Takemoto DJ; Harris R; Brightman A; McGill J; Hua D; Davidson H; Fenwick B; Wagner LM
    Vet Ophthalmol; 2004; 7(3):163-7. PubMed ID: 15091323
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spontaneous Pathology and Routine Clinical Pathology Parameters in Aging Beagle Dogs: A Comparison With Adolescent and Young Adults.
    Barnes J; Cotton P; Robinson S; Jacobsen M
    Vet Pathol; 2016 Mar; 53(2):447-55. PubMed ID: 26553522
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Post-mortem biochemistry of beagle dog lenses after treatment with Fluvastatin (Sandoz) for 2 years at different dose levels.
    Hockwin O; Evans M; Roberts SA; Stoll RE
    Lens Eye Toxic Res; 1990; 7(3-4):563-75. PubMed ID: 2151608
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The influence of age at time of exposure to 226Ra or 239Pu on distribution, retention, postinjection survival, and tumor induction in beagle dogs.
    Bruenger FW; Lloyd RD; Miller SC
    Radiat Res; 1991 Mar; 125(3):248-56. PubMed ID: 2000447
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Juvenile eye growth, when completed? An evaluation based on IOL-Master axial length data, cross-sectional and longitudinal.
    Fledelius HC; Christensen AS; Fledelius C
    Acta Ophthalmol; 2014 May; 92(3):259-64. PubMed ID: 23575156
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Scanning electronic microscopy of lens after mechanical eye injury].
    Namazova IK
    Vestn Oftalmol; 2011; 127(6):40-5. PubMed ID: 22442994
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro dimensions and curvatures of human lenses.
    Rosen AM; Denham DB; Fernandez V; Borja D; Ho A; Manns F; Parel JM; Augusteyn RC
    Vision Res; 2006 Mar; 46(6-7):1002-9. PubMed ID: 16321421
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Developmental changes in the lens of the young Beagle dog.
    Heywood R
    Vet Rec; 1971 Apr; 88(16):411-4. PubMed ID: 5574562
    [No Abstract]   [Full Text] [Related]  

  • 31. The age of rats affects the response of lens epithelial explants to fibroblast growth factor. An ultrastructural analysis.
    Lovicu FJ; McAvoy JW
    Invest Ophthalmol Vis Sci; 1992 Jun; 33(7):2269-78. PubMed ID: 1607238
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development and repair of cataract induced by ultraviolet radiation.
    Michael R
    Ophthalmic Res; 2000; 32 Suppl 1():ii-iii; 1-44. PubMed ID: 10817682
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computer modeling of secondary fiber development and growth: I. Nonprimate lenses.
    Kuszak JR; Mazurkiewicz M; Zoltoski R
    Mol Vis; 2006 Apr; 12():251-70. PubMed ID: 16617293
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of age-derived lens thickness to optically measured lens thickness in IOL power calculation: a clinical study.
    Lam S
    J Refract Surg; 2012 Feb; 28(2):154-5. PubMed ID: 22185465
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study.
    Strenk SA; Semmlow JL; Strenk LM; Munoz P; Gronlund-Jacob J; DeMarco JK
    Invest Ophthalmol Vis Sci; 1999 May; 40(6):1162-9. PubMed ID: 10235549
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative morphological study of the normal human lens and the cataract by scanning electron microscopy.
    Canals M; Costa-Vila J; Potau JM; Ruano-Gil D
    Ital J Anat Embryol; 1995; 100 Suppl 1():213-7. PubMed ID: 11322295
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biometric study of the canine eye, using A-mode ultrasonography.
    Schiffer SP; Rantanen NW; Leary GA; Bryan GM
    Am J Vet Res; 1982 May; 43(5):826-30. PubMed ID: 7091846
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence for a relationship between longevity of mammalian species and a lens growth parameter.
    Tréton J; Courtois Y
    Gerontology; 1989; 35(2-3):88-94. PubMed ID: 2792789
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of lens sutures.
    Kuszak JR; Zoltoski RK; Tiedemann CE
    Int J Dev Biol; 2004; 48(8-9):889-902. PubMed ID: 15558480
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative analysis of animal model lens anatomy: accommodative range is related to fiber structure and organization.
    Kuszak JR; Mazurkiewicz M; Jison L; Madurski A; Ngando A; Zoltoski RK
    Vet Ophthalmol; 2006; 9(5):266-80. PubMed ID: 16939454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.