These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 24436416)

  • 1. Atomic-scale variability and control of III-V nanowire growth kinetics.
    Chou YC; Hillerich K; Tersoff J; Reuter MC; Dick KA; Ross FM
    Science; 2014 Jan; 343(6168):281-4. PubMed ID: 24436416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic-Scale Observation of Vapor-Solid Nanowire Growth via Oscillatory Mass Transport.
    Zhang Z; Wang Y; Li H; Yuan W; Zhang X; Sun C; Zhang Z
    ACS Nano; 2016 Jan; 10(1):763-9. PubMed ID: 26645527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. III-V semiconductor nanowire growth: does arsenic diffuse through the metal nanoparticle catalyst?
    Tizei LH; Chiaramonte T; Ugarte D; Cotta MA
    Nanotechnology; 2009 Jul; 20(27):275604. PubMed ID: 19531855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Barrierless Switching between a Liquid and Superheated Solid Catalyst during Nanowire Growth.
    Pinion CW; Hill DJ; Christesen JD; McBride JR; Cahoon JF
    J Phys Chem Lett; 2016 Oct; 7(20):4236-4242. PubMed ID: 27717285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ TEM observation of the vapor-solid-solid growth of <001[combining macron]> InAs nanowires.
    Sun Q; Pan D; Li M; Zhao J; Chen P; Lu W; Zou J
    Nanoscale; 2020 Jun; 12(21):11711-11717. PubMed ID: 32452500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of local Si-nanowire growth kinetics using in situ transmission electron microscopy of heated cantilevers.
    Kallesøe C; Wen CY; Mølhave K; Bøggild P; Ross FM
    Small; 2010 Sep; 6(18):2058-64. PubMed ID: 20730823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ TEM Observation of Crystal Structure Transformation in InAs Nanowires on Atomic Scale.
    Zhang Z; Liu N; Li L; Su J; Chen PP; Lu W; Gao Y; Zou J
    Nano Lett; 2018 Oct; 18(10):6597-6603. PubMed ID: 30234307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppression of the vapor-liquid-solid growth of silicon nanowires by antimony addition.
    Nimmatoori P; Zhang Q; Dickey EC; Redwing JM
    Nanotechnology; 2009 Jan; 20(2):025607. PubMed ID: 19417276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth.
    Hofmann S; Sharma R; Wirth CT; Cervantes-Sodi F; Ducati C; Kasama T; Dunin-Borkowski RE; Drucker J; Bennett P; Robertson J
    Nat Mater; 2008 May; 7(5):372-5. PubMed ID: 18327262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-specific fabrication of nanoscale heterostructures: local chemical modification of GaN nanowires using electrochemical dip-pen nanolithography.
    Maynor BW; Li J; Lu C; Liu J
    J Am Chem Soc; 2004 May; 126(20):6409-13. PubMed ID: 15149238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled synthesis of ultra-long AlN nanowires in different densities and in situ investigation of the physical properties of an individual AlN nanowire.
    Liu F; Su ZJ; Mo FY; Li L; Chen ZS; Liu QR; Chen J; Deng SZ; Xu NS
    Nanoscale; 2011 Feb; 3(2):610-8. PubMed ID: 21103529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of self-assembled growth of ordered GaAs nanowire arrays by metalorganic vapor phase epitaxy on GaAs vicinal substrates.
    Mohan P; Bag R; Singh S; Kumar A; Tyagi R
    Nanotechnology; 2012 Jan; 23(2):025601. PubMed ID: 22166369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth and optical properties of axial hybrid III-V/silicon nanowires.
    Hocevar M; Immink G; Verheijen M; Akopian N; Zwiller V; Kouwenhoven L; Bakkers E
    Nat Commun; 2012; 3():1266. PubMed ID: 23232396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic Resolution in Situ Imaging of a Double-Bilayer Multistep Growth Mode in Gallium Nitride Nanowires.
    Gamalski AD; Tersoff J; Stach EA
    Nano Lett; 2016 Apr; 16(4):2283-8. PubMed ID: 26990711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanowire morphology and particle phase control by tuning the In concentration of the foreign metal nanoparticle.
    Hallberg RT; Messing ME; Dick KA
    Nanotechnology; 2019 Feb; 30(5):054005. PubMed ID: 30511656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxide mediated liquid-solid growth of high aspect ratio aligned gold silicide nanowires on Si(110) substrates.
    Bhatta UM; Rath A; Dash JK; Ghatak J; Yi-Feng L; Liu CP; Satyam PV
    Nanotechnology; 2009 Nov; 20(46):465601. PubMed ID: 19843987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silicon oxide nanowire growth mechanisms revealed by real-time electron microscopy.
    Kolíbal M; Novák L; Shanley T; Toth M; Šikola T
    Nanoscale; 2016 Jan; 8(1):266-75. PubMed ID: 26608729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of planar arrays of one-dimensional p-n heterojunctions using surface-directed growth of nanowires and nanowalls.
    Nikoobakht B; Herzing A
    ACS Nano; 2010 Oct; 4(10):5877-86. PubMed ID: 20843070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and operation of research-scale III-V nanowire growth reactors.
    Schroer MD; Xu SY; Bergman AM; Petta JR
    Rev Sci Instrum; 2010 Feb; 81(2):023903. PubMed ID: 20192505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrically Controlling and Monitoring InP Nanowire Growth from Solution.
    Dorn A; Allen PM; Bawendi MG
    ACS Nano; 2009 Oct; 3(10):3260-5. PubMed ID: 19772291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.