These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

472 related articles for article (PubMed ID: 2443682)

  • 1. The effect of membrane potential on the mammalian sodium-potassium pump reconstituted into phospholipid vesicles.
    Goldshlegger R; Karlish SJ; Rephaeli A; Stein WD
    J Physiol; 1987 Jun; 387():331-55. PubMed ID: 2443682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Passive rubidium fluxes mediated by Na-K-ATPase reconstituted into phospholipid vesicles when ATP- and phosphate-free.
    Karlish SJ; Stein WD
    J Physiol; 1982 Jul; 328():295-316. PubMed ID: 6290646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrogenic and electroneutral transport modes of renal Na/K ATPase reconstituted into proteoliposomes.
    Goldshleger R; Shahak Y; Karlish SJ
    J Membr Biol; 1990 Feb; 113(2):139-54. PubMed ID: 2157016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cation activation of the pig kidney sodium pump: transmembrane allosteric effects of sodium.
    Karlish SJ; Stein WD
    J Physiol; 1985 Feb; 359():119-49. PubMed ID: 2582111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational transitions in fluorescein-labeled (Na,K)ATPase reconstituted into phospholipid vesicles.
    Rephaeli A; Richards D; Karlish SJ
    J Biol Chem; 1986 May; 261(14):6248-54. PubMed ID: 3009450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical potential accelerates the E1P(Na)----E2P conformational transition of (Na,K)-ATPase in reconstituted vesicles.
    Rephaeli A; Richards DE; Karlish SJ
    J Biol Chem; 1986 Sep; 261(27):12437-40. PubMed ID: 3017974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pump current and Na+/K+ coupling ratio of Na+/K+-ATPase in reconstituted lipid vesicles.
    Clarke RJ; Apell HJ; Läuger P
    Biochim Biophys Acta; 1989 Jun; 981(2):326-36. PubMed ID: 2543461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxonol VI as an optical indicator for membrane potentials in lipid vesicles.
    Apell HJ; Bersch B
    Biochim Biophys Acta; 1987 Oct; 903(3):480-94. PubMed ID: 2444259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium and potassium fluxes and membrane potential of human neutrophils: evidence for an electrogenic sodium pump.
    Simchowitz L; Spilberg I; De Weer P
    J Gen Physiol; 1982 Mar; 79(3):453-79. PubMed ID: 6281359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of atp or phosphate on passive rubidium fluxes mediated by Na-K-ATPase reconstituted into phospholipid vesicles.
    Karlish SJ; Stein WD
    J Physiol; 1982 Jul; 328():317-31. PubMed ID: 6290647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of membrane potential on active and passive sodium transport in Xenopus oocytes.
    Eisner DA; Valdeolmillos M; Wray S
    J Physiol; 1987 Apr; 385():643-59. PubMed ID: 2443675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sidedness of the effects of sodium and potassium ions on the conformational state of the sodium-potassium pump.
    Karlish SJ; Pick U
    J Physiol; 1981 Mar; 312():505-29. PubMed ID: 6267267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Na] and [K] dependence of the Na/K pump current-voltage relationship in guinea pig ventricular myocytes.
    Nakao M; Gadsby DC
    J Gen Physiol; 1989 Sep; 94(3):539-65. PubMed ID: 2607334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Demonstration of Na+-selective channels in the luminal-membrane vesicles isolated from pars recta of rabbit proximal tubule.
    Jacobsen C; Røigaard-Petersen H; Sheikh MI
    FEBS Lett; 1988 Aug; 236(1):95-9. PubMed ID: 2456959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. D(-)3-hydroxybutyrate cotransport with Na in rat renal brush border membrane vesicles.
    Barac-Nieto M
    Pflugers Arch; 1987 Apr; 408(4):321-7. PubMed ID: 3588250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of ionophores to study Na+ transport pathways in renal microvillus membrane vesicles.
    Aronson PS; Kinsella JL
    Fed Proc; 1981 Jun; 40(8):2213-7. PubMed ID: 6263713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contributions of electrogenic pumps to resting membrane potentials: the theory of electrogenic potentials.
    Sjodin RA
    Soc Gen Physiol Ser; 1984; 38():105-27. PubMed ID: 6320455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion fluxes in giant excised cardiac membrane patches detected and quantified with ion-selective microelectrodes.
    Kang TM; Markin VS; Hilgemann DW
    J Gen Physiol; 2003 Apr; 121(4):325-47. PubMed ID: 12668735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An improved procedure for reconstitution of the uncoupling protein and in-depth analysis of H+/OH- transport.
    Winkler E; Klingenberg M
    Eur J Biochem; 1992 Jul; 207(1):135-45. PubMed ID: 1378400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of phloretin on ionophore mediated electroneutral transmembrane translocations of H(+), K(+) and Na(+) in phospholipid vesicles.
    Bala S; Kombrabail MH; Prabhananda BS
    Biochim Biophys Acta; 2001 Feb; 1510(1-2):258-69. PubMed ID: 11342163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.